版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省菏泽市名校中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称但不是轴对称图形的为()A. B.C. D.2.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1 B.O2 C.O3 D.O43.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是A.① B.④ C.②或④ D.①或③4.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b5.一次函数的图像不经过的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D.7.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数8.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.9.一个几何体的三视图如图所示,该几何体是A.直三棱柱 B.长方体 C.圆锥 D.立方体10.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.12二、填空题(本大题共6个小题,每小题3分,共18分)11.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.12.函数y=113.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是___.14.因式分解:a2b+2ab+b=.15.已知a+b=1,那么a2-b2+2b=________.16.如图,角α的一边在x轴上,另一边为射线OP,点P(2,2),则tanα=_____.三、解答题(共8题,共72分)17.(8分)先化简,再求值:,其中,.18.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.19.(8分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.20.(8分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)(1)当y=0时,求x的值.(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cot∠MCB的值.21.(8分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).22.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.23.(12分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是人,扇形C的圆心角是°;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?24.学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中n,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.考点:中心对称图形;轴对称图形.2、A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.3、D【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.故选D.4、A【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.5、C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像6、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.7、C【解析】
直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.8、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,当点Q在AD上时,PA=PQ,∴DP=AP=x,∴S=;当点Q在DC上时,PC=PQCP=4-x,∴S=;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.9、A【解析】
根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.10、D【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.【详解】∵∠C=90°,AB=6,∴,∴BC=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中,,,.12、x>1【解析】试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足x-1≻0⇒x≻1考点:二次根式、分式有意义的条件点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.13、12【解析】
根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型.14、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b215、1【解析】
解:∵a+b=1,∴原式=故答案为1.【点睛】本题考查的是平方差公式的灵活运用.16、【解析】解:过P作PA⊥x轴于点A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案为.点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键.三、解答题(共8题,共72分)17、1【解析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.详解:原式
当x=-1、y=2时,
原式=-(-1)2+2×22
=-1+8
=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.19、(1)矩形的周长为4m;(2)矩形的面积为1.【解析】
(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.20、(1),;(2)【解析】
(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.(2)由题意易求M,P点坐标,再求出MP的直线方程,可得cot∠MCB.【详解】(1)把代入函数解析式得,即,解得:,.(2)把代入得,即得,∵二次函数,与轴的交点为,∴点坐标为.设直线的解析式为,代入,得解得,∴,∴点坐标为,在中,又∵∴.【点睛】本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.21、(1)GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4)90°﹣.【解析】
(1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;(2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;(4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【详解】解:(1)GF=GD,GF⊥GD,理由:∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴点F,A,D在同一条线上,∵∠F=∠ADB,∴GF=GD,故答案为GF=GD,GF⊥GD;(2)连接AF,∵点D关于直线AE的对称点为点F,∴直线AE是线段DF的垂直平分线,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,设∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如图3,连接AF,BD,∵点D与点F关于AE对称,∴AE是线段DF的垂直平分线,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四边形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的对角线,∴∠ADB=∠ABD=α,在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.22、(1)1;(2)详见解析;(3)750;(4).【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年高端餐厅员工聘用合同示范3篇
- 二零二五版冻猪肉储备政府采购合同争议解决与仲裁条款2篇
- 二零二五版商业地产改造与招商合作合同3篇
- 二零二五年度脚手架施工材料供应与租赁合同3篇
- 二零二五版新型让与担保合同-供应链金融支持协议2篇
- 二零二五版家政服务员与雇主及家政协会三方合作合同3篇
- 二零二五版公司间股权置换、转让与资本运作合同3篇
- 二零二五年教育机构教学质量兜底服务合同范本3篇
- 二零二五版二手房贷款买卖合同范本:适用于房产交易中的担保合同2篇
- 二零二五年度购物卡电子支付解决方案合同3篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- 安徽大学大学生素质教育学分认定办法
- 巴布亚新几内亚离网光储微网供电方案
- 高度限位装置类型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生儿预防接种护理质量考核标准
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
评论
0/150
提交评论