




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杭州第二中学2025届高一下数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要2.设点是棱长为的正方体的棱的中点,点在面所在的平面内,若平面分别与平面和平面所成的锐二面角相等,则点到点的最短距离是()A. B. C. D.3.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.364.不等式x+5(x-1)A.[-3,1C.[125.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定6.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.47.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.8.在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A. B.C. D.9.过点且与点距离最大的直线方程是()A. B.C. D.10.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:本大题共6小题,每小题5分,共30分。11.设实数满足,则的最小值为_____12.已知,则的值为_____________13.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=214.已知等差数列的前三项为,则此数列的通项公式为______15.设等差数列的前项和为,若,,则的值为______.16.已知三棱锥外接球的表面积为,面,则该三棱锥体积的最大值为____。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.18.已知.(1)若对任意的,不等式上恒成立,求实数的取值范围;(2)解关于的不等式.19.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若,的面积为,求边的长.20.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.21.在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用充分必要条件直接推理即可【详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【点睛】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题2、B【解析】
以为原点,为轴为轴为轴,建立空间直角坐标系,计算三个平面的法向量,根据夹角相等得到关系式:,再利用点到直线的距离公式得到答案.【详解】`以为原点,为轴为轴为轴,建立空间直角坐标系.则易知:平面的法向量为平面的法向量为设平面的法向量为:则,取平面分别与平面和平面所成的锐二面角相等或看作平面的两条平行直线,到的距离.根据点到直线的距离公式得,点到点的最短距离都是:故答案为B【点睛】本题考查了空间直角坐标系,二面角,最短距离,意在考查学生的计算能力和空间想象能力.3、C【解析】
两圆外切时,有三条公切线.【详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.4、D【解析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法5、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.6、B【解析】
对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【点睛】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.7、D【解析】
不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.8、A【解析】
先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【点睛】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.9、C【解析】
过点且与点距离最大的直线满足:,根据两直线互相垂直,斜率的关系可以求出直线的斜率,写出点斜式方程,最后化成一般方程,选出正确的选项.【详解】因为过点且与点距离最大的直线满足:,所以有,而,所以直线方程为,故本题选C.【点睛】本题考查了直线与直线垂直时斜率的性质,考查了数学运算能力.10、A【解析】
根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由实数满足作出可行域如图,
由图形可知:.
令,化为,
由图可知,当直线过点时,直线在轴上的截距最小,有最小值为1.
故答案为:1.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.12、【解析】
利用和差化积公式将两式化简,然后两式相除得到的值,再利用二倍角公式即可求出.【详解】由得,,,两式相除得,,则.【点睛】本题主要考查和差化积公式以及二倍角公式的应用.13、32或【解析】
由余弦定理求出c,再利用面积公式即可得到答案。【详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【点睛】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。14、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.15、-6【解析】
由题意可得,求解即可.【详解】因为等差数列的前项和为,,所以由等差数列的通项公式与求和公式可得解得.故答案为-6.【点睛】本题考查了等差数列的通项公式与求和公式,考查了学生的计算能力,属于基础题.16、【解析】
根据球的表面积计算出球的半径.利用勾股定理计算出三角形外接圆的半径,根据正弦定理求得的长,再根据圆内三角形面积的最大值求得三角形面积的最大值,由此求得三棱锥体积的最大值.【详解】画出图像如下图所示,其中是外接球的球心,是底面三角形的外心,.设球的半径为,三角形外接圆的半径为,则,故在中,.在三角形中,由正弦定理得.故三角形为等边三角形,其高为.由于为定值,而三角形的高等于时,三角形的面积取得最大值,由于为定值,故三棱锥的体积最大值为.【点睛】本小题主要考查外接球有关计算,考查三棱锥体积的最大值的计算,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);【解析】
(1)根据已知求得的斜率,由点斜式求出直线的方程.(2)根据已知求得的斜率,由点斜式写出直线的方程,联立的方程,求得两条直线交点的坐标,再由三角形面积公式求得三角形面积.【详解】解:(1)∵∥,∴直线的斜率是又直线过点,∴直线的方程为,即(2)∵,∴直线的斜率是又直线过点,∴直线的方程为即由得与的交点为∴直线,,轴围成的三角形的面积是【点睛】本小题主要考查两条直线平行、垂直时,斜率的对应关系,考查直线的点斜式方程,考查两条直线交点坐标的求法,考查三角形的面积公式,属于基础题.18、(1);(2)见解析.【解析】
(1)参变分离后可得在上恒成立,利用基本不等式可求的最小值,从而得到参数的取值范围.(2)原不等式可化为,就对应方程的两根的大小关系分类讨论可得不等式的解集.【详解】(1)对任意的,恒成立即恒成立.因为当时,(当且仅当时等号成立),所以即.(2)不等式,即,①当即时,;②当即时,;③当即时,.综上:当时,不等式解集为;当时,不等式解集为;当时,不等式解集为.【点睛】含参数的一元二次不等式,其一般的解法是:先考虑对应的二次函数的开口方向,再考虑其判别式的符号,其次在判别式大于零的条件下比较两根的大小,最后根据不等号的方向和开口方向得到不等式的解.一元二次不等式的恒成立问题,参变分离后可以转化为函数的最值进行讨论,后者可利用基本不等式来求.19、(1)(2)【解析】
(1)利用正弦定理实现边角转化,逆用两角和的正弦公式,进行化简,最后可求出角的大小;(2)利用面积公式结合,可以求出的值,再利用余弦定理可以求出边的长.【详解】(1)在中,由正弦定理得,,故,,,代入,并两边同除以,得:,即,因为在中,,所以,故,又由可得,所以,同样由得:.(2)因为的面积为,所以,又由(1)得:,所以,,又,所以,.由余弦定理得:所以.【点睛】本题考查了了正弦定理的应用,考查了面积公式,考查了利用余弦定理求边长,考查了数学运算能力.20、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范围.点睛:本题考查了平面向量的数量积的应用,三角函数的单调性与最值,三角函数的化简,恒成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵阳人文科技学院《风景园林制图》2023-2024学年第二学期期末试卷
- 江苏理工学院《分子生物学及分子生物学实验》2023-2024学年第二学期期末试卷
- 烟台城市科技职业学院《数据库技术(一)》2023-2024学年第二学期期末试卷
- 合肥信息技术职业学院《技术经济与企业管理》2023-2024学年第二学期期末试卷
- 广州铁路职业技术学院《电气专业外语》2023-2024学年第一学期期末试卷
- 湖北文理学院《环境管理与规划》2023-2024学年第二学期期末试卷
- 广西外国语学院《基础日语》2023-2024学年第二学期期末试卷
- 吉林建筑大学《能源动力与轮机工程概论》2023-2024学年第一学期期末试卷
- 新疆科信职业技术学院《机器视觉技术》2023-2024学年第二学期期末试卷
- 2025年副主任医师报考条件解析与备考指南
- GB/T 24008-2024环境影响及相关环境因素的货币价值评估
- 黑龙江省哈尔滨市第四十七中学2024-2025学年九年级上学期期中英语试题含答案
- 2021年质量、环境和职业健康安全三体系相关方需求和期望分析表及组织环境分析报告
- 马克思主义民族理论与政策学习通超星期末考试答案章节答案2024年
- 研发管理咨询服务合同
- 十八项医疗核心制度
- 人教pep版小学英语三年级下册【全册】单元测试卷期中期末复习试卷
- SOR-04-014-00 药品受托生产企业审计评估报告模板
- 建筑施工安全风险辨识分级管控指南
- 北京市西城区北京市第四中学2024-2025学年七年级上学期分班考数学试卷
- 国有建设用地使用权网上交易竞价通知书
评论
0/150
提交评论