版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省重点中学高一数学第二学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是两条不重合的直线,为两个不同的平面,则下列说法正确的是()A.若,是异面直线,那么与相交B.若//,,则C.若,则//D.若//,则2.从A,B,C三个同学中选2名代表,则A被选中的概率为()A. B. C. D.3.圆与圆的位置关系为()A.内切 B.相交 C.外切 D.相离4.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.5.若直线过点,则此直线的倾斜角是()A. B. C. D.90。6.已知等差数列中,,则()A. B.C. D.7.为了治疗某种疾病,研制了一种新药,为确定该药的疗效,生物实验室有只小动物,其中有3只注射过该新药,若从这只小动物中随机取出只检测,则恰有只注射过该新药的概率为()A. B. C. D.8.给出函数为常数,且,,无论a取何值,函数恒过定点P,则P的坐标是A. B. C. D.9.已知数列的前项和为,且,,则()A.127 B.129 C.255 D.25710.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;12.函数是定义域为R的奇函数,当时,则的表达式为________.13.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________14.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-515.在中,,是边上一点,且满足,若,则_________.16.函数的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.18.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。19.已知,,(1)若,求;(2)求的最大值,并求出对应的x的值.20.等差数列中,.(1)求数列的通项公式;(2)设,求数列的前n项和.21.在平面直角坐标系中,已知点,,坐标分别为,,,为线段上一点,直线与轴负半轴交于点,直线与交于点.(1)当点坐标为时,求直线的方程;(2)求与面积之和的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
采用逐一验证法,结合线面以及线线之间的位置关系,可得结果.【详解】若,是异面直线,与也可平行,故A错若//,,也可以在内,故B错若也可以在内,故C错若//,则,故D对故选:D【点睛】本题主要考查线面以及线线之间的位置关系,属基础题.2、D【解析】
先求出基本事件总数,被选中包含的基本事件个数,由此能求出被选中的概率.【详解】从,,三个同学中选2名代表,基本事件总数为:,共个,被选中包含的基本事件为:,共2个,被选中的概率.故选:D.【点睛】本题考查概率的求法,考查列举法和运算求解能力,是基础题.3、B【解析】试题分析:两圆的圆心距为,半径分别为,,所以两圆相交.故选C.考点:圆与圆的位置关系.4、C【解析】
在中,利用正弦定理求出即可.【详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【点睛】本题考查了正弦定理的应用及相关的运算问题,属于基础题.5、A【解析】
根据两点间斜率公式,可求得斜率.再由斜率与倾斜角关系即可求得直线的倾斜角.【详解】直线过点则直线的斜率设倾斜角为,根据斜率与倾斜角关系可得由直线倾斜角可得故选:A【点睛】本题考查了直线斜率的求法,斜率与倾斜角关系,属于基础题.6、C【解析】
,.故选C.7、B【解析】
将只注射过新药和未注射过新药的小动物分别编号,列出所有的基本事件,并确定事件“恰有只注射过该新药”所包含的基本事件的数目,然后利用古典概型的概率计算公式可该事件的概率.【详解】将只注射过新药的小动物编号为、、,只未注射新药的小动物编号为、、,记事件恰有只注射过该新药,所有的基本事件有:、、、、、、、、、、、、、、,共个,其中事件所包含的基本事件个数为个,由古典概型的概率公式得,故选B.【点睛】本题考查古典概型的概率公式,列举基本事件是解题的关键,一般在列举基本事件有枚举法和数状图法,列举时应注意不重不漏,考查计算能力,属于中等题.8、D【解析】试题分析:因为恒过定点,所以函数恒过定点.故选D.考点:指数函数的性质.9、C【解析】
利用迭代关系,得到另一等式,相减求出,判断数列是否为等比数列,利用等比数列求和公式可得.【详解】因为,,所以,相减得,,,又,所以,,所以数列是等比数列,所以,故选C.【点睛】本题考查等比数列的求和,数列通项公式的求法,考查计算求解能力,属于中档题.10、B【解析】
写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.12、【解析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性13、【解析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.14、④【解析】
由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.15、【解析】
记,则,则可求出,设,,得,,故结合余弦定理可得,解得的值,即可求,进而求的值.【详解】根据题意,不妨设,,则,因,所以,设,由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案为:.【点睛】本题主要考查了余弦定理在解三角形中的综合应用以及同角三角函数的基本关系式,属于中档题.16、【解析】分析:利用两角和正弦公式简化为y=,从而得到函数的最大值.详解:y=sinx+cosx==.∴函数的最大值是故答案为点睛:本题考查了两角和正弦公式,考查了正弦函数的图象与性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【详解】(1),,,解得.又,,.(2)由(1),得【点睛】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题.18、(1)B(0,7)(2)19x+y-7=0【解析】
(1)联立直线AB,BD的方程,求出点B坐标;(2)求出点C12,-52,利用B,C【详解】由A(4,3)及AB边上的高所在直线为x-y-3=0,得AB所在直线方程为x+y-7=0又BD所在直线方程为3x+y-7=0由3x+y-7=0x+y-7=0,得B(0,7)(2)设C(m,n),又A(4,3),D为AC中点,则Dm+4由已知得3×m+42+又B(0,7)得直线BC的方程为19x+y-7=0.【点睛】考查直线的垂直关系、直线的交点坐标、直线方程的求法等,考查运算求解能力.19、(Ⅰ)(II)1,此时【解析】
(Ⅰ)根据平面向量的坐标运算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐标运算,利用模长公式和三角函数求出最大值.【详解】解:(Ⅰ)计算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,当cosx=1,即x=1kπ,k∈Z时,|+|取得最大值为1.【点睛】本题考查了平面向量的坐标运算与数量积运算问题,是基础题.20、(1);(2).【解析】
(1)根据等差数列公式得到方程组,计算得到答案.(2)先求出,再利用裂项求和求得.【详解】(1)等差数列中,,解得:(2)数列的前n项和.【点睛】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式的灵活运用及计算能力.21、(1);(2).【解析】
(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.【详解】(1)当时,直线的方程为,所以,直线的方程为①,又直线的方程为②,①②联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京大学《工程造价应用软件》2023-2024学年第一学期期末试卷
- 南昌职业大学《国际工程管理》2023-2024学年第一学期期末试卷
- 南昌医学院《大数据医疗》2023-2024学年第一学期期末试卷
- 2018年中国砂石骨料行业运行报告
- 明达职业技术学院《视频广告创作》2023-2024学年第一学期期末试卷
- 闽南师范大学《计量地理实验》2023-2024学年第一学期期末试卷
- 绵阳城市学院《文字学与汉字教育》2023-2024学年第一学期期末试卷
- 2025年物业客户服务实务操作规范定制版合同3篇
- 泸州医疗器械职业学院《街舞》2023-2024学年第一学期期末试卷
- 陇东学院《飞行器装配工艺》2023-2024学年第一学期期末试卷
- 航道整治课程设计
- SQL Server 2000在医院收费审计的运用
- 《FANUC-Oi数控铣床加工中心编程技巧与实例》教学课件(全)
- 微信小程序运营方案课件
- 陈皮水溶性总生物碱的升血压作用量-效关系及药动学研究
- 安全施工专项方案报审表
- 学习解读2022年新制定的《市场主体登记管理条例实施细则》PPT汇报演示
- 好氧废水系统调试、验收、运行、维护手册
- 中石化ERP系统操作手册
- 五年级上册口算+脱式计算+竖式计算+方程
- 气体管道安全管理规程
评论
0/150
提交评论