陕西省西安市西工大附中2025届高一下数学期末质量检测试题含解析_第1页
陕西省西安市西工大附中2025届高一下数学期末质量检测试题含解析_第2页
陕西省西安市西工大附中2025届高一下数学期末质量检测试题含解析_第3页
陕西省西安市西工大附中2025届高一下数学期末质量检测试题含解析_第4页
陕西省西安市西工大附中2025届高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市西工大附中2025届高一下数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的值域为A.[1,] B.[1,2] C.[,2] D.[2.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.43.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.44.设A,B是任意事件,下列哪一个关系式正确的()A.A+B=A B.ABA C.A+AB=A D.A5.若点,直线过点且与线段相交,则的斜率的取值范围是()A.或B.或C.D.6.若函数,则()A.9 B.1 C. D.07.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.2978.的直观图如图所示,其中,则在原图中边的长为()A. B. C.2 D.9.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.10.设均为正数,且,,.则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与圆有公共点,则实数的取值范围是__________.12.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.13.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________14.(理)已知函数,若对恒成立,则的取值范围为.15.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.16.已知为等差数列,为其前项和,若,则,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.18.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.19.高二数学期中测试中,为了了解学生的考试情况,从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).(1)求样本容量和频率分布直方图中的值;(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..20.如图,在四边形中,已知,,(1)若,且的面积为,求的面积:(2)若,求的最大值.21.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.2、D【解析】

利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【点睛】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.3、B【解析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.4、C【解析】

试题分析:因为题目中给定了A,B是任意事件,那么利用集合的并集思想来分析,两个事件的和事件不一定等于其中的事件A.可能大于事件A选项B,AB表示的为AB的积事件,那么利用集合的思想,和交集类似,不一定包含A事件.选项C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.选项D中,利用补集的思想和交集的概念可知,表示的事件A不发生了,同时事件B发生,显然D不成立.考点:本试题考查了事件的关系.点评:对于事件之间的关系的理解,可以运用集合中的交集,并集和补集的思想分别对应到事件中的和事件,积事件,非事件上来分析得到,属于基础题.【详解】请在此输入详解!5、C【解析】试题分析:画出三点坐标可知,两个边界值为和,数形结合可知为.考点:1.相交直线;2.数形结合的方法;6、B【解析】

根据的解析式即可求出,进而求出的值.【详解】∵,∴,故,故选B.【点睛】本题主要考查分段函数的概念,以及已知函数求值的方法,属于基础题.7、B【解析】

根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【点睛】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.8、D【解析】

由直观图确定原图形中三角形边的关系及长度,然后计算.【详解】在原图形中,,,∴.故选:D.【点睛】本题考查直观图,考查由直观图还原原平面图形.掌握斜二测画法的规则是解题关键.9、A【解析】

模拟程序运行,观察变量值,判断循环条件可得结论.【详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【点睛】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.10、A【解析】试题分析:在同一坐标系中分别画出,,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数的取值范围是.【点睛】本题考查直线与圆的位置关系,点到直线距离公式是常用方法.12、【解析】

设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【点睛】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.13、【解析】

根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.14、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.15、【解析】

根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.16、【解析】

利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】

(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点睛】本题考查了三棱柱的体积公式,线面平行的证明,利用线面垂直求参数,属于难题.18、(1)是偶函数(2)见解析(3)【解析】

(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.19、(1)40,0.025,0.005(2)【解析】试题分析:(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,100)内的学生有6人,分数在[90,100]内的学生有2人,结合古典概型概率公式和对立事件概率公式可求得至少有一名成绩在[90,100]内的概率试题解析:(1)由题意可知,样本容量,,.……………6分(2)由题意,分数在内的有4人,分数在内的有2人,成绩是分以上(含分)的学生共6人.从而抽取的名同学中得分在的学生人数的所有可能的取值为.,所以所求概率为考点:频率分布直方图;茎叶图20、(1);(2)3【解析】

(1)根据可解出,验证出,从而求得所求面积;(2)设,,在中利用余弦定理构造关于的方程;在中分别利用正余弦定理可得到和,代入可求得;根据三角函数最值可求得的最大值,即可得到结果.【详解】(1)由得:,即(2)设,在中,由正弦定理得:…①由余弦定理得:…②在中,由余弦定理得:将①②代入整理得:当,即时,取最大值【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理和三角形面积公式的应用;本题中线段长度最值的求解的关键是能够利用正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论