版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安、宿迁等2025届高一数学第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°2.在中,(,,分别为角、、的对边),则的形状为()A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形3.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.74.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则5.已知实数满足约束条件,则目标函数的最小值为()A. B. C.1 D.56.若a、b、c>0且a(a+b+c)+bc=4-2,则2a+b+c的最小值为()A.-1 B.+1C.2+2 D.2-27.已知则的值为()A. B. C. D.8.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是()A.①③ B.②④ C.①④ D.②③9.在正方体中,与所成的角为()A.30° B.90° C.60° D.120°10.函数的最大值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于数列满足:,其前项和为记满足条件的所有数列中,的最大值为,最小值为,则___________12.设等比数列的公比,前项和为,则.13.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.14.公比为2的等比数列的各项都是正数,且,则的值为___________15.设奇函数的定义域为R,且对任意实数满足,若当∈[0,1]时,,则____.16.已知变量之间满足线性相关关系,且之间的相关数据如下表所示:_____.12340.13.14三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.18.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.19.若,讨论关于x的方程在上的解的个数.20.在平面上有一点列、、、、,对每个正整数,点位于函数的图像上,且点、点与点构成一个以为顶角顶点的等腰三角形;(1)求点的纵坐标的表达式;(2)若对每个自然数,以、、为边长能构成一个三角形,求的取值范围;(3)设,若取(2)中确定的范围内的最小整数,问数列的最大项的项数是多少?试说明理由;21.数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【点睛】本题考查直线斜率与倾斜角的关系,属于基础题.2、B【解析】
利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【详解】故答案选B【点睛】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.3、B【解析】
分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.4、C【解析】对于A、B、D均可能出现,而对于C是正确的.5、A【解析】
作出不等式组表示的平面区域,再观察图像即可得解.【详解】解:先作出不等式组表示的平面区域,如图所示,由图可知目标函数所对应的直线过点时目标函数取最小值,则,故选:A.【点睛】本题考查了简单的线性规划问题,重点考查了数形结合的数学思想方法,属基础题.6、D【解析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(当且仅当a+c=b+a,即b=c时取“=”),∴2a+b+c≥2=2(-1)=2-2.故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误7、B【解析】
直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.8、B【解析】
说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【点睛】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.9、C【解析】
把异面直线与所成的角,转化为相交直线与所成的角,利用为正三角形,即可求解.【详解】连结,则,所以相交直线与所成的角,即为异面直线与所成的角,连结,则是正三角形,所以,即异面直线与所成的角,故选C.【点睛】本题主要考查了空间中异面直线及其所成角的求法,其中根据异面直线的定义,把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】
令,根据正弦型函数的性质可得,那么,可将问题转化为二次函数在定区间上的最值问题.【详解】由题意,令,可得,,∴,∴原函数的值域与函数的值域相同.∵函数图象的对称轴为,,取得最大值为.故选:D.【点睛】本题考查三角函数中的恒等变换、函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意换元法的使用,将问题转化为二次函数的值域问题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
由,,,,,分别令,3,4,5,求得的前5项,观察得到最小值,,计算即可得到的值.【详解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.综上可得的最大值,最小值为,则.故答案为:1.【点睛】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.12、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.13、或【解析】
由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【点睛】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.14、2【解析】
根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.15、【解析】
根据得到周期,再利用周期以及奇函数将自变量转变到给定区间计算函数值.【详解】因为,所以,所以,又因为,所以,则,故,又因为是奇函数,所以,则.【点睛】(1)形如的函数是周期函数,周期;(2)若要根据奇偶性求解分段函数的表达式,记住一个原则:“用未知表示已知”,也就是将自变量变形,利用已知范围和解析式求解.16、【解析】
根据回归直线方程过样本点的中心,代入数据即可计算出的值.【详解】因为,,所以,解得.故答案为:.【点睛】本题考查根据回归直线方程过样本点的中心求参数,难度较易.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】
(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3个球和4个球的分别有,人,则解得.故投进3个球和4个球的分别有2人和2人.(2)若要使进球数之和为8,则1人投进3球,另1人投进5球或2人都各投进4球.记投进3球的2人为,;投进4球的2人为,;投进5球的2人为,.则从这6人中任选2人的所有可能事件为:,,,,,,,,,,,,,,.共15种.其中进球数之和为8的是,,,,,有5种.所以这2人进球数之和为8的概率为.【点睛】本题主要考查平均数的计算和古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18、(1)证明见解析,(2)【解析】
(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【点睛】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立问题的求解;本题解题关键是能够进行合理分类,分别在两种情况下求解参数的范围,最终取交集得到结果.19、答案不唯一,见解析【解析】
首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.20、(1);(2);(3)最大,详见解析;【解析】
(1)易得的横坐标为代入函数即可得纵坐标.(2)易得数列为递减的数列,若要组成三角形则,再代入表达式求解不等式即可.(3)由可知求即可.【详解】(1)由点、点与点构成一个以为顶角顶点的等腰三角形有.故.(2)因为,故为减函数,故,又以、、为边长能构成一个三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防汛应急预案怎样写
- 《供配电技术》2.3 教案
- 电话销售转正总结8篇
- 省级医院主治医生聘用合同(32篇)
- 幼儿园大班家长工作计划
- 大学毕业生的自我总结(3篇)
- 幼儿园社会实践个人总结范文(31篇)
- DB12-T 1097-2021 公路水运品质工程示范创建评价规范
- 河南省新乡市(2024年-2025年小学五年级语文)人教版期末考试(下学期)试卷及答案
- 2024年水处理阻垢分散剂系列项目投资申请报告代可行性研究报告
- 2025届高考作文点题与扣题写作指导教学设计
- 4.2.1 同类项与合并同类项 课件 2024-2025学年人教版数学七年级上册
- 2024年国开电大 高级财务会计 形考任务4答案
- 2024年1月1378国开电大本科管理英语3期末考试试题及答案
- 中国邮政集团有限公司笔试题库
- 中国药物性肝损伤基层诊疗与管理指南(2024年)解读
- 2024年部编新改版语文小学四年级上册第三单元复习课教案及单元测试题(有答案)
- 公路工程临时用电施工方案
- 《量子化学计算方法》课件
- 山东省青岛市西海岸新区2023-2024学年三年级上学期期中数学试题
- DL5009.3-2013 电力建设安全工作规程 第3部分:变电站
评论
0/150
提交评论