云南省元江县一中2025届数学高一下期末调研试题含解析_第1页
云南省元江县一中2025届数学高一下期末调研试题含解析_第2页
云南省元江县一中2025届数学高一下期末调研试题含解析_第3页
云南省元江县一中2025届数学高一下期末调研试题含解析_第4页
云南省元江县一中2025届数学高一下期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省元江县一中2025届数学高一下期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,是外接圆上一动点,若,则的最大值是()A.1 B. C. D.22.在中,已知三个内角为,,满足,则().A. B.C. D.3.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.4.的值等于()A. B. C. D.5.在中,角的对边分别为,,且边,则面积的最大值为()A. B. C. D.6.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm7.已知,复数,若的虚部为1,则()A.2 B.-2 C.1 D.-18.已知非零实数a,b满足,则下列不等关系一定成立的是()A. B. C. D.9.已知实数列-1,x,y,z,-2成等比数列,则xyz等于A.-4 B. C. D.10.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数据的平均数为,则____________.12.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.13.向量满足:,与的夹角为,则=_____________;14.已知为第二象限角,且,则_________.15.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.16.已知数列满足,,则_______;_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持岁以下岁以上(含岁)(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.18.已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求证:平面PBC⊥平面PCD.19.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式20.已知的顶点,边上的中线所在直线方程为,边上的高,所在直线方程为.(1)求顶点的坐标;(2)求直线的方程.21.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

以的中点为原点,建立如图所示的平面直角坐标系,设M的坐标为,,求出点的坐标,得到,根据正弦函数的图象和性质即可求出答案.【详解】以的中点O为原点,以为x轴,建立如图所示的平面直角坐标系,则外接圆的方程为,设M的坐标为,,过点作垂直轴,,,,,,,,,,,,,,,,,,,,,,,其中,,当时,有最大值,最大值为,故选C.【点睛】本题考查了向量的坐标运算和向量的数乘运算和正弦函数的图象和性质,以及直角三角形的问题,考查了学生的分析解决问题的能力,属于难题.2、C【解析】

利用正弦定理、余弦定理即可得出.【详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.3、A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A4、D【解析】

利用诱导公式先化简,再利用差角的余弦公式化简得解.【详解】由题得原式=.故选D【点睛】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解析】

由已知利用同角三角函数基本关系式可求,根据余弦定理,基本不等式可求的最大值,进而利用三角形面积公式即可求解.【详解】解:,可解得:,由余弦定理,可得,即,当且仅当时成立.等号当时成立.故选D.【点睛】本题主要考查了余弦定理,三角形面积公式的应用,属于基本知识的考查.6、C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).7、B【解析】,所以,。故选B。8、D【解析】

根据不等式的基本性质,一一进行判断即可得出正确结果.【详解】A.,取,显然不成立,所以该选项错误;B.,取,显然不成立,所以该选项错误;C.,取,显然不成立,所以该选项错误;D.,由已知且,所以,即.所以该选项正确.故选:.【点睛】本题考查不等式的基本性质,属于容易题.9、C【解析】.10、A【解析】

观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据求平均数的公式,得到关于的方程,求得.【详解】由题意得:,解得:,故填:.【点睛】本题考查求一组数据的平均数,考查基本数据处理能力.12、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.13、【解析】

根据模的计算公式可直接求解.【详解】故填:.【点睛】本题考查了平面向量模的求法,属于基础题型.14、.【解析】

先由求出的值,再利用同角三角函数的基本关系式求出、即可.【详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【点睛】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.15、0.5【解析】

由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.16、【解析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)120;(2).【解析】

(1)参与调查的总人数为20000,其中从持“不支持”态度的人数5000中抽取了30人,由此能求出n.(2)总体的平均数为9,与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,由此能求出任取1个数与总体平均数之差的绝对值超过0.6的概率.【详解】(1)参与调查的总人数为8000+4000+2000+1000+2000+3000=20000,其中不支持态度的人数2000+3000=5000中抽取了30人,所以n=.(2)总体的平均数与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,所以任取一个数与总体平均数之差的绝对值超过0.6的概率.【点睛】本题主要考查了样本容量的求法,分层抽样,用列举法求古典概型的概率,属于中档题.18、(Ⅰ)见解析(Ⅱ)见解析【解析】试题分析:(1)连,与交于,利用三角形的中位线,可得线线平行,从而可得线面平行;

(2)证明,即可证得平面平面.试题解析:(Ⅰ)连接AC交BD与O,连接EO,∵E、O分别为PA、AC的中点,∴EO∥PC,∵PC⊄平面EBD,EO⊂平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC⊂平面ABCD,∴PD⊥BC,∵ABCD为正方形,∴BC⊥CD,∵PD∩CD=D,PD、CD⊂平面PCD∴BC⊥平面PCD,又∵BC⊂平面PBC,∴平面PBC⊥平面PCD.【点睛】本题考查线面平行,考查面面平行,掌握线面平行,面面平行的判定方法是关键.19、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】

(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.20、(1);(2)【解析】

(1)根据边上的高所在直线方程求出的斜率,由点斜式可得的方程,与所在直线方程联立即可得结果;(2)设则,代入中,可求得点坐标,利用两点式可得结果.【详解】(1)由边上的高所在直线方程为得,所以直线AB所在的直线方程为,即联立解得所以顶点的坐标为(4,3)(2)因为在直线上,所以设则,代入中,得所以则直线的方程为,即【点睛】本题主要考查直线的方程,直线方程主要有五种形式,每种形式的直线方程都有其局限性,斜截式与点斜式要求直线斜率存在,所以用这两种形式设直线方程时要注意讨论斜是否存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论