




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省示范名校2025届高一下数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,直线的倾斜角等于()A. B. C. D.2.已知之间的几组数据如下表:
1
2
3
4
5
6
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.3.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形4.数列是各项均为正数的等比数列,数列是等差数列,且,则()A. B.C. D.5.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值6.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在等比数列中,已知,那么的前4项和为().A.81 B.120 C.121 D.1928.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”9.下列函数中,既是奇函数又是增函数的为()A. B. C. D.10.函数的最大值为A.4 B.5 C.6 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前n项和,则___________.12.直线与圆交于两点,若为等边三角形,则______.13.在△ABC中,若,则△ABC的形状是____.14.已知x,y满足,则的最大值为________.15.的值域是______.16.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数().(1)若在区间上的值域为,求实数的值;(2)在(1)的条件下,记的角所对的边长分别为,若,的面积为,求边长的最小值;(3)当,时,在答题纸上填写下表,用五点法作出的图像,并写出它的单调递增区间.018.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.19.(1)已知,且为第三象限角,求的值(2)已知,计算的值.20.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.21.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据以及可求出直线的倾斜角.【详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【点睛】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.2、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′3、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.4、B【解析】分析:先根据等比数列、等差数列的通项公式表示出、,然后表示出和,然后二者作差比较即可.详解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故选B.点睛:本题主要考查了等比数列的性质.比较两数大小一般采取做差的方法.属于基础题.5、D【解析】
根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.6、A【解析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件7、B【解析】
根据求出公比,利用等比数列的前n项和公式即可求出.【详解】,.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n项和,属于中档题.8、C【解析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.9、D【解析】
根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.10、B【解析】试题分析:因为,而,所以当时,取得最大值5,选B.【考点】正弦函数的性质、二次函数的性质【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.二、填空题:本大题共6小题,每小题5分,共30分。11、17【解析】
根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.12、或【解析】
根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【点睛】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.13、钝角三角形【解析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题14、6【解析】
作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.16、4【解析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)填表见解析,作图见解析,().【解析】
(1)利用二倍角公式和辅助角公式可把化简为,再求出的范围后根据正弦函数的性质可得关于的方程组,解方程组可得它们的值.(2)先求出,再根据面积求出,最后根据余弦定理和基本不等式可求的最小值.(3)根据五点法直接作出图像,再根据正弦函数的性质可得函数的单调增区间.【详解】,当时,,则.因为,所以,解得,即.(2)由,得,又的面积为,所以,即,所以,当且仅当时,.(3)由题意得,填表0111作图如下图:由得(),所以函数的单调递增区间是().【点睛】本题考查正弦型函数在给定范围上的最值、余弦定理、三角形中的面积公式、正弦型函数的图像与单调性以及基本不等式,本题综合性较高,为中档题.18、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】
(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19、(1);(2)【解析】
(1)由,结合为第三象限角,即可得解;(2)由,代入求解即可.【详解】(1),∴,又∵是第三象限.∴(2).【点睛】本题主要考查了同角三角函数的基本关系,属于基础题.20、(1)证明见解析;(2)2.【解析】
(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【点睛】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.21、(1)递减区间为[-2,0)和(0,2【解析】
(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴ ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴ ∵g(x)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渔业资源养护与开发技术平台研发应用考核试卷
- 电气安装船舶与海洋工程考核试卷
- 石材行业的人力资源管理考核试卷
- 天然气行业人才培养与技能培训考核试卷
- 畜牧机械设计原理考核试卷
- 纤维素纤维的电磁波吸收特性研究考核试卷
- 电工仪表的模块化维修考核试卷
- 江苏省淮安市田家炳中学2024-2025学年第二学期期末教学质量检测试题高三语文试题含解析
- 吉林省白城市洮北区第一中学2025届高中毕业班第一次诊断性检测试题历史试题文试题含解析
- 四川体育职业学院《论文写作与学术道德》2023-2024学年第一学期期末试卷
- 米、面制品安全生产与管理考核试卷
- 资金过桥合同协议
- 2025年江苏省连云港市东海县中考英语一模试卷
- 2024年山东青岛职业技术学院招聘笔试真题
- 2025-2030国内智能玩具行业市场发展现状及竞争策略与投资发展研究报告
- 仓库操作规程试题及答案
- 2025履约类保函担保合同范本
- 2025年03月河北邯郸武安市事业单位春季博硕人才引进55名笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 水土保持监测技术规范解读与应用
- 2024年记者证考试时事新闻处理试题及答案
- 一年级开学行为习惯养成训练方案
评论
0/150
提交评论