版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省永城市实验高级中学2025届数学高一下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.2.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个3.已知向量,与的夹角为,则()A.3 B.2 C. D.14.已知满足条件,则目标函数的最小值为A.0 B.1 C. D.5.记等差数列的前n项和为.若,则()A.7 B.8 C.9 D.106.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如。在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是()A. B. C. D.7.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.258.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.319.在中,角,,所对的边分别为,,,且边上的高为,则的最大值是()A.8 B.6 C. D.410.中,角的对边分别为,且,则角()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线平分圆的周长,则实数________.12.当时,的最大值为__________.13.设函数,则的值为__________.14.若实数满足,则取值范围是____________。15.已知数列中,,,,则的值为_____.16.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.18.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.19.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.20.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?21.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.2、C【解析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.3、C【解析】
由向量的模公式以及数量积公式,即可得到本题答案.【详解】因为向量,与的夹角为,所以.故选:C【点睛】本题主要考查平面向量的模的公式以及数量积公式.4、C【解析】作出不等式区域如图所示:求目标函数的最小值等价于求直线的最小纵截距.平移直线经过点A(-2,0)时最小为-2.故选C.5、D【解析】
由可得值,可得可得答案.【详解】解:由,可得,所以,从而,故选D.【点睛】本题主要考察等差数列的性质及等差数列前n项的和,由得出的值是解题的关键.6、B【解析】
找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可.【详解】不超过15的素数为,共6个,任取2个分别为,,,,,,,,,,,,,,,共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知.【点睛】本题主要考查了古典概型,基本事件,属于中档题.7、C【解析】
将|a+b8、A【解析】
先求等比数列通项公式,再根据等比数列求和公式求结果.【详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.9、D【解析】,这个形式很容易联想到余弦定理:cosA,①而条件中的“高”容易联想到面积,bcsinA,即a2=2bcsinA,②将②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),当A=时取得最大值4,故选D.点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10、B【解析】
根据题意结合正弦定理,由题,可得三角形为等边三角形,即可得解.【详解】由题:即,中,由正弦定理可得:,即,两边同时平方:,由题,所以,即,所以,即为等边三角形,所以.故选:B【点睛】此题考查利用正弦定理进行边角互化,根据边的关系判断三角形的形状,求出三角形的内角.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.12、-3.【解析】
将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.13、【解析】
根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.14、;【解析】
利用三角换元,设,;利用辅助角公式将化为,根据三角函数值域求得结果.【详解】可设,,本题正确结果:【点睛】本题考查利用三角换元法求解取值范围的问题,关键是能够将问题转化为三角函数值域的求解问题.15、1275【解析】
根据递推关系式可求得,从而利用并项求和的方法将所求的和转化为,利用等差数列求和公式求得结果.【详解】由得:则,即本题正确结果:【点睛】本题考查并项求和法、等差数列求和公式的应用,关键是能够利用递推关系式得到数列相邻两项之间的关系,从而采用并项的方式来进行求解.16、10.【解析】
由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【点睛】本小题主要考查向量数量积运算,考查向量夹角的计算,考查向量模的求法,属于基础题.18、(1)(2)【解析】
(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.19、(1)(2)【解析】
(1)设圆心坐标为,根据,求得,进而得到圆的方程;(2)由在圆上,则,得到,求得,进而求得圆的切线方程.【详解】(1)由题意,圆心在直线上,设圆心坐标为,由,即,所以,圆心,半径,圆的标准方程为.(2)设切线方程为,因为在圆上,所以,所以,又,所以,所以切线方程为,即,所以过的切线方程.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的位置关系的应用,其中解答中熟记圆的方程的形式,以及圆的切线的性质是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解析】
(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.【点睛】本题主要考查阅读能力及建模能力、等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安邮电大学《微型计算机原理与接口技术》2022-2023学年第一学期期末试卷
- CSB事故案例专栏丨BP德克萨斯州炼油厂火灾爆炸事故
- 医院培训课件:《什么是糖尿病》
- 陕西西安市长安区2022-2023学年八年级上学期期末历史试题(解析版)
- 《质点动力学A》课件
- 《财税新政实务解析》课件
- 中国电镀污水处理系统行业市场发展态势及投资前景研判报告
- 2025年中国粮油行业市场运行态势、进出口贸易及发展趋势预测报告
- 旅游行业导游服务质量标准
- 购房合同 读书
- DB14-T 2862-2023 柿树容器大苗培育技术规程
- 2024年湖南省中考英语真题卷及答案解析
- 储能科学与工程基础知识单选题100道及答案解析
- 食品干杂供销合同(2篇)
- 湖北省鄂东南省级示范高中教育教学改革联盟学校2024-2025学年高一上学期期中联考英语试题 含答案
- 2024-2025学年河南省“金太阳联考”高一年级上学期期中考试数学试题(含答案)
- DB11-T 2324-2024脚手架钢板立网防护应用技术规程
- 建筑施工安全隐患排查与风险评估方案
- 燃气工程管理制度
- 绿化服务承诺与质量保证措施方案
- DB3502T 081-2022 竹荪栽培技术规程
评论
0/150
提交评论