![2025届湖南省高一下数学期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M0A/06/12/wKhkGWZ0hRKAPVAfAAHHO--5W-Y825.jpg)
![2025届湖南省高一下数学期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M0A/06/12/wKhkGWZ0hRKAPVAfAAHHO--5W-Y8252.jpg)
![2025届湖南省高一下数学期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M0A/06/12/wKhkGWZ0hRKAPVAfAAHHO--5W-Y8253.jpg)
![2025届湖南省高一下数学期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M0A/06/12/wKhkGWZ0hRKAPVAfAAHHO--5W-Y8254.jpg)
![2025届湖南省高一下数学期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M0A/06/12/wKhkGWZ0hRKAPVAfAAHHO--5W-Y8255.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省高一下数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.2.在△ABC中,如果,那么cosC等于()A. B. C. D.3.在平面直角坐标系中,圆:,圆:,点,动点,分别在圆和圆上,且,为线段的中点,则的最小值为A.1 B.2 C.3 D.44.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.5.已知角的终边过点,则()A. B. C. D.6.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件7.若函数,则的值为()A. B. C. D.8.已知直线与,若,则()A.2 B.1 C.2或-1 D.-2或19.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π10.设P是所在平面内的一点,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程,的解集是__________.12.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.13.函数的最小正周期为________14.已知,则__________.15.已知实数满足条件,则的最大值是________.16.若,方程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.18.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?19.已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.20.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.21.两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.2、D【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,选D3、A【解析】
由得,根据向量的运算和两点间的距离公式,求得点的轨迹方程,再利用点与圆的位置关系,即可求解的最小值,得到答案.【详解】设,,,由得,即,由题意可知,MN为Rt△AMB斜边上的中线,所以,则又由,则,可得,化简得,∴点的轨迹是以为圆心、半径等于的圆C3,∵M在圆C3内,∴MN的最小值即是半径减去M到圆心的距离,即,故选A.【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、A【解析】
先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、D【解析】
首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【详解】由已知得,则.故选D【点睛】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.6、C【解析】
结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题7、D【解析】
根据分段函数的定义域与函数解析式的关系,代值进行计算即可.【详解】解:由已知,又,又,所以:.
故选:D.【点睛】本题考查了分段函数的函数值计算问题,抓住定义域的范围,属于基础题.8、C【解析】
由两直线平行的等价条件,即可得到本题答案.【详解】因为,所以,解得或.故选:C【点睛】本题主要考查利用两直线平行的等价条件求值.9、B【解析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10、B【解析】移项得.故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.12、【解析】
用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.13、【解析】
根据的最小正周期判断即可.【详解】因为的最小正周期均为,故的最小正周期为.故答案为:【点睛】本题主要考查了正切余切函数的周期,属于基础题型.14、【解析】
对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【详解】因为,所以,即,所以.【点睛】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.15、8【解析】
画出满足约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】实数,满足条件的可行域如下图所示:将目标函数变形为:,则要求的最大值,即使直线的截距最大,由图可知,直线过点时截距最大,,故答案为:8.【点睛】本题考查线性规划的简单应用,解题关键是明确目标函数的几何意义.16、【解析】
运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)6【解析】
(1)由平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行可判定平面;(2)由三棱锥的体积为4,可知四棱锥的体积,再由三棱锥的体积公式即可求得高.【详解】(1)证明:连接,与交于点,连接.因为侧面是平行四边形,所以点是的中点.因为点是棱的中点,所以.因为平面,平面,所以平面.(2)解:因为三棱锥的体积为4,所以三棱柱的体积为12,则四棱锥的体积为.因为侧面是边长为2的正方形,所以侧面的面积为.设点到平面的距离为,则,解得.故点到平面的距离为6.【点睛】本题考查直线平行平面的判定和用三棱锥体积公式求点到平面的距离.18、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解析】
将问题转化为解方程和解不等式,以及,分别求解即可.【详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【点睛】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.19、(1);(2).【解析】
(1)根据对比中项的性质即可得出一个式子,再带入等差数列的通项公式即可求出公差.(2)根据(1)的结果,利用分组求和即可解决.【详解】(1)因为成等比数列,所以,所以,即,因为,所以,所以;(2)因为,所以,,.【点睛】本题主要考查了等差数列通项式,以及等差中项的性质.数列的前的求法,求数列前项和常用的方法有错位相减、分组求和、裂项相消.20、(1);(2).【解析】
(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算的定义域,最后求解的值域.【详解】(1)根据题意,由正弦定理得,因为,故,消去得.,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由(1)知,得到,故,解得.又应用正弦定理,,由三角形面积公式有:.又因,故,故.故的取值范围是【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.21、(1),当汽车以的速度行驶,能使得全称运输成本最小;(2).【解析】
(1)计算出汽车的行驶时间为小时,可得出全程运输成本为,其中,代入,,利用基本不等式求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海南省2024七年级道德与法治上学期期中学情评估新人教版
- 湘教版数学八年级下册第三章《图形与坐标》听评课记录
- 安徽期中数学试卷
- 苏科版数学七年级上册2.5.3《有理数的加法与减法》听评课记录
- 实习之路模板
- 【人教版】八年级地理上册第三章《土地资源》听课评课记录及优化训练答案
- 专家评审会会议纪要
- 科学把握时间
- 教育培训行业的年度盛典
- 2017-2022年中国家居收纳用品产业深度调研与投资前景分析报告(目录)
- 现代汉语词汇学精选课件
- PCB行业安全生产常见隐患及防范措施课件
- 上海音乐学院 乐理试题
- SAP中国客户名单
- DB32∕T 186-2015 建筑消防设施检测技术规程
- 2022年福建泉州中考英语真题【含答案】
- 汽车座椅骨架的焊接夹具毕业设计说明书(共23页)
- 露天矿山职业危害预先危险分析表
- 浅谈固定资产的审计
- WZCK-20系列微机直流监控装置使用说明书(v1.02)
- 模糊推理方法
评论
0/150
提交评论