安徽省毫州市第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第1页
安徽省毫州市第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第2页
安徽省毫州市第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第3页
安徽省毫州市第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第4页
安徽省毫州市第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省毫州市第二中学2025届数学高一下期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B. C. D.2.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.3.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C4.设,则()A.3 B.2 C.1 D.05.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.6.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.307.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.8.已知函数,且的图象向左平移个单位后所得的图象关于坐标原点对称,则的最小值为()A. B. C. D.9.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆10.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件二、填空题:本大题共6小题,每小题5分,共30分。11.设变量x、y满足约束条件,则目标函数的最大值为_______.12.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.13.已知等比数列中,,,若数列满足,则数列的前项和=________.14.已知数列,若对任意正整数都有,则正整数______;15.的值为___________.16.已知,均为锐角,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,内角,,所对的边分别是,,,已知.(1)求角的大小;(2)设,的面积为,求的值.18.设函数的定义域为R,当时,,且对任意实数m、n,有成立,数列满足,且.(1)求的值;(2)若不等式对一切都成立,求实数k的最大值.19.已知,.(1)求的值;(2)求的值.20.如图,某广场中间有一块绿地,扇形所在圆的圆心为,半径为,,广场管理部门欲在绿地上修建观光小路:在上选一点,过修建与平行的小路,与平行的小路,设所修建的小路与的总长为,.(1)试将表示成的函数;(2)当取何值时,取最大值?求出的最大值.21.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意,所以,因此,从而,可知不可能等于.2、C【解析】

可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.3、B【解析】

由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题BA,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选:B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题4、B【解析】

先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题5、C【解析】

先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.6、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.7、C【解析】

作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.8、C【解析】

由函数图像的平移变换得的图象向左平移个单位,得到,再结合三角函数的性质运算即可得解.【详解】解:,将的图象向左平移个单位,得到,因为平移后图象关于对称,所以,可得,,,,因为,所以的最小值为,故选C.【点睛】本题考查了函数图像的平移变换及三角函数的性质,属基础题.9、D【解析】原方程即即或故原方程表示两个半圆.10、C【解析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

可通过限定条件作出对应的平面区域图,再根据目标函数特点进行求值【详解】可行域如图所示;则可化为,由图象可知,当过点时,有最大值,则其最大值为:故答案为:3.【点睛】线性规划问题关键是能正确画出可行域,目标函数可由几何意义确定具体含义(最值或斜率)12、【解析】

设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.13、【解析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.14、9【解析】

分析数列的单调性,以及数列各项的取值正负,得到数列中的最大项,由此即可求解出的值.【详解】因为,所以时,,时,,又因为在上递增,在也是递增的,所以,又因为对任意正整数都有,所以.故答案为:.【点睛】本题考查数列的单调性以及数列中项的正负判断,难度一般.处理数列单调性或者最值的问题时,可以采取函数的思想来解决问题,但是要注意到数列对应的函数的定义域为.15、【解析】

=16、【解析】

先求出,,再由,并结合两角和与差的正弦公式求解即可.【详解】由题意,可知,则,又,则,或者,因为为锐角,所以不成立,即成立,所以.故.故答案为:.【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用正弦定理可将已知等式化为,利用两角和差余弦公式展开整理可求得,根据可求得结果;(2)利用三角形面积公式可构造方程求出;利用余弦定理可直接求得结果.【详解】(1)由正弦定理可得:,即(2)设的面积为,则由得:,解得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、三角形面积公式和余弦定理的应用;关键是能够通过正弦定理将边化角,得到角的一个三角函数值,从而根据角的范围求得结果.18、(1)(2)【解析】

(1)首先令,得:,根据得到,即是以,的等差数列,再计算即可.(2)将题意转化为,设,判断其单调性,求出最小值即可得到答案.【详解】令,得:,.所以.因为,所以.所以,.所以是以,的等差数列.所以,.(2)因为恒成立.即恒成立.设,知,且,,即,故为关于的增函数,.所以,的最大值为.【点睛】本题主要考查数列与函数的综合,利用函数的单调性是解题的关键,属于难题.19、(1);(2).【解析】

(1)由,算得,接着利用二倍角公式,即可得到本题答案;(2)利用和角公式展开,再代入的值,即可得到本题答案.【详解】(1)因为,,所以.所以;(2).【点睛】本题主要考查利用同角三角函数的基本关系,和差公式以及二倍角公式求值,属基础题.20、(1),;(2)时,.【解析】

(1)由扇形的半径为,在中,,则,利用正弦定理求出、,从而可得出函数;(2)利用三角恒等变换思想,可得出,,利用正弦函数的单调性与最值即可求出的最大值.【详解】(1)由于扇形的半径为,,在中,,由正弦定理,,同理.,;(2),.,,当,即时,.【点睛】本题考查三角函数的实际应用,考查正弦定理与三角恒等变换思想的应用,解题的关键就是利用三角恒等变换思想将三角函数解析式化简,考查分析问题和解决问题的能力,属于中等题.21、(1);(2).【解析】

(1)利用正弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论