




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省文登一中高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正项数列,若点在函数的图像上,则()A.12 B.13 C.14 D.162.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.3.已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A.1 B.2 C.3 D.44.若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”.下列说法正确的是()A.“连续整边三角形”只能是锐角三角形B.“连续整边三角形”不可能是钝角三角形C.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个D.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个5.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定6.(2016高考新课标III,理3)已知向量,则ABC=A.30 B.45 C.60 D.1207.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.8.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.9.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为()A. B. C. D.10.已知在中,,且,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线:与直线:平行,则______.12.三棱锥的各顶点都在球的球面上,,平面,,,球的表面积为,则的表面积为_______.13.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.14.已知三个事件A,B,C两两互斥且,则P(A∪B∪C)=__________.15.正方体中,分别是的中点,则所成的角的余弦值是__________.16.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有___人三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.18.已知函数,(1)若,求a的值,并判断的奇偶性;(2)求不等式的解集.19.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到下表数据:单价(元)销量(件)且,,(1)已知与具有线性相关关系,求出关于回归直线方程;(2)解释回归直线方程中的含义并预测当单价为元时其销量为多少?20.已知等差数列an满足a3=5,a6=a4(1)求数列an,b(2)设cn=anbn221.某学校高一、高二、高三的三个年级学生人数如下表
高三
高二
高一
女生
133
153
z
男生
333
453
633
按年级分层抽样的方法评选优秀学生53人,其中高三有13人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取2人,经检测她们的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把这2人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过3.5的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由已知点在函数图象上求出通项公式,得,由对数的定义计算.【详解】由题意,,∴,∴.故选:A.【点睛】本题考查数列的通项公式,考查对数的运算.属于基础题.2、B【解析】
试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.3、B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在两条异面直线,,,,,,由面面平行的判定定理得,故正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选4、C【解析】
举例三边长分别是的三角形是钝角三角形,否定A,B,通过计算求出最大角是最小角的二倍的三角形,从而可确定C、D中哪个正确哪个错误.【详解】三边长分别是的三角形,最大角为,则,是钝角,三角形是钝角三角形,A,B都错,如图中,,,是的平分线,则,∴,,∴,,又由是的平分线,得,∴,解得,∴“连续整边三角形”中最大角是最小角的2倍的三角形只有一个,边长分别为4,5,6,C正确,D错误.故选D.【点睛】本题考查余弦定理,考查命题的真假判断,数学上要说明一个命题是假命题,只要举一个反例即可,而要说明它是真命题,则要进行证明.5、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】试题分析:由题意,得,所以,故选A.【考点】向量的夹角公式.【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.7、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.8、C【解析】
先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.9、D【解析】
采用列举法写出总事件,再结合古典概型公式求解即可【详解】被选出的情况具体有:甲乙、甲丙、乙丙,甲被选中有两种,则故选:D10、C【解析】
先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.12、【解析】
根据题意可证得,而,所以球心为的中点.由球的表面积为,即可求出,继而得出的值,求出三棱锥的表面积.【详解】如图所示:∵,平面,∴,又,故球心为的中点.∵球的表面积为,∴,即有.∴,.∴,,,.故的表面积为.故答案为:.【点睛】本题主要考查三棱锥的表面积的求法,球的表面积公式的应用,意在考查学生的直观想象能力和数学运算能力,属于基础题.13、.【解析】
设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【点睛】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.14、0.9【解析】
先计算,再计算【详解】故答案为0.9【点睛】本题考查了互斥事件的概率计算,属于基础题型.15、【解析】
取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.16、16【解析】
利用分层抽样的性质,直接计算,即可求得,得到答案.【详解】由题意,可知共有1024名学生、家长、老师参加,其中家长256人,通过分层抽样从中抽取64人,进行某问卷调查,则抽到的家长人数为人.故答案为16【点睛】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的概念和性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【点睛】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1),,是偶函数(2)或【解析】
(1)先由已知求出,然后结合利用定义法判断函数的奇偶性即可;(2)讨论当时,当时对数函数的单调性求解不等式即可.【详解】解:(1)由题意得,,即,则,,则,函数的定义域为,则,是偶函数;(2)当时,在上是减函数,,,解得,所以原不等式的解集为;当时,在上是增函数,,,即,所以原不等式的解集为,综上所述,当时,原不等式的解集为,当时,原不等式的解集为.【点睛】本题考查了利用定义法判断函数的奇偶性,主要考查了利用对数函数的单调性求解不等式,重点考查了分类讨论的数学思想方法,属中档题.19、(1);(2)销量为件.【解析】
(1)利用最小二乘法的公式求得与的值,即可求出线性回归方程;(2)的含义是单价每增加1元,该产品的销量将减少7件;在(1)中求得的回归方程中,取求得值,即可得到单价为12元时的销量.【详解】(1)由题意得:,,,,关于回归直线方程为;(2)的含义是单价每增加元,该产品的销量将减少件;当时,,即当单价为元时预测其销量为件.【点睛】本题主要考查线性回归方程的求法—最小二乘法,以及利用线性回归方程进行预测估计。20、(1)an=2n-1,【解析】
(1)利用等差数列、等比数列的通项公式即可求得;(2)由(1)知,cn=anbn2【详解】(1)设等差数列an的公差为d,等比数列bn的公比为因为a6=a4+4所以an由b3b5又显然b4必与b2同号,所以所以q2=b所以bn(2)由(1)知,cn则Tn12①-②,得1=1+1-所以Tn【点睛】用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.21、(1)433(2)(3)【解析】
(1)设该校总人数为n人,由题意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)设所抽样本中有m个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2名女生,3名男生,分别记作S1,S2;B1,B2,B3,则从中任取2人的所有基本事件为(S1,B1),(S1,B2),(S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托审计服务合同协议书
- 驾校合同解除协议
- 报名协议合同
- 全款购车协议合同
- 卡车租车协议合同
- 耗材合同空档期补充协议
- 补充协议增加合同当事人
- 违反合同赔偿协议
- 油漆合同协议范本
- 包过协议合同
- 2025年浙江长征职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024-2030年中国便携式超声行业市场发展监测及投资潜力预测报告
- 《习作:我的“自画像”》说课稿-2023-2024学年四年级下册语文统编版001
- 2025无人驾驶视觉识别技术
- 湖南省长沙市雨花区2024-2025学年高一上学期期末考试英语试卷 含解析
- 企业职务犯罪法制讲座
- 【农学课件】瓜类蔬菜栽培
- IATF16949体系推行计划(任务清晰版)
- 2024年军事理论知识全册复习题库及答案
- 2023年江苏皋开投资发展集团有限公司招聘笔试真题
- 任务 混合动力汽车空调系统典型构造与检修
评论
0/150
提交评论