江苏省常州中学2025届数学高一下期末联考试题含解析_第1页
江苏省常州中学2025届数学高一下期末联考试题含解析_第2页
江苏省常州中学2025届数学高一下期末联考试题含解析_第3页
江苏省常州中学2025届数学高一下期末联考试题含解析_第4页
江苏省常州中学2025届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州中学2025届数学高一下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.()A. B. C. D.2.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π3.已知为等差数列,,则的值为()A.3 B.2 C. D.14.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定5.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°6.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为()A. B. C. D.7.设,则()A.3 B.2 C.1 D.08.已知直线与圆相切,则的值是()A.1 B. C. D.9.计算()A. B. C. D.10.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,的前项和为,则___________.12.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.13.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______14.数列中,其前n项和,则的通项公式为______________..15.已知一个铁球的体积为,则该铁球的表面积为________.16.已知数列满足:,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设正项等比数列且的等差中项为.(1)求数列的通项公式;(2)若,数列的前n项为,数列满足,为数列的前项和,求.18.设数列的前项和为,若且求若数列满足,求数列的前项和.19.已知函数,数列中,若,且.(1)求证:数列是等比数列;(2)设数列的前项和为,求证:.20.已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.21.已知数列中,.(1)求证:是等比数列,求数列的通项公式;(2)已知:数列,满足①求数列的前项和;②记集合若集合中含有个元素,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

将根据诱导公式化为后,利用两角和的正弦公式可得.【详解】.故选:A【点睛】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.2、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.3、D【解析】

根据等差数列下标和性质,即可求解.【详解】因为为等差数列,故解得.故选:D.【点睛】本题考查等差数列下标和性质,属基础题.4、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.5、B【解析】

直接利用正弦定理计算得到答案.【详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.6、C【解析】

先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解.【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有共6种取法,则取出的2只球编号之和是偶数的有共2种取法,即取出的2只球编号之和是偶数的概率为,故选:C.【点睛】本题考查了古典型概率公式,属基础题.7、B【解析】

先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题8、D【解析】

利用直线与圆相切的条件列方程求解.【详解】因为直线与圆相切,所以,,,故选D.【点睛】本题考查直线与圆的位置关系,通常利用圆心到直线的距离与圆的半径的大小关系进行判断,考查运算能力,属于基本题.9、A【解析】

根据对数运算,即可求得答案.【详解】故选:A.【点睛】本题主要考查了对数运算,解题关键是掌握对数运算基础知识,考查了计算能力,属于基础题.10、D【解析】

根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.12、【解析】

联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【点睛】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.13、18【解析】

根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【点睛】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型14、【解析】

利用递推关系,当时,,当时,,即可求出.【详解】由题知:当时,.当时,.检验当时,,所以.故答案为:【点睛】本题主要考查根据数列的前项和求数列的通项公式,体现了分类讨论的思想,属于简单题.15、.【解析】

通过球的体积求出球的半径,然后求出球的表面积.【详解】球的体积为球的半径球的表面积为:故答案为:【点睛】本题考查球的表面积与体积的求法,考查计算能力,属于基础题.16、【解析】

从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用已知条件列出方程,求出首项与公比,然后求解通项公式.(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.【详解】(1)设等比数列的公比为,由题意,得,解得,所以.(2)由(1)得,∴,∴,∴.【点睛】本题考查数列的递推关系式以及数列求和,考查转化思想以及计算能力.18、(1);(2).【解析】

(1)由时,,再验证适合,于是得出,再利用等差数列的求和公式可求出;(2)求出数列的通项公式,判断出数列为等比数列,再利用等比数列的求和公式求出数列的前项和.【详解】(1)当且时,;也适合上式,所以,,则数列为等差数列,因此,;(2),且,所以,数列是等比数列,且公比为,所以.【点睛】本题考查数列的前项和与数列通项的关系,考查等差数列与等比数列的求和公式,考查计算能力,属于中等题.19、(1)见解析;(2)见解析【解析】

(1)将代入到函数表达式中,得,两边都倒过来,即可证明数列是等比数列;(2)由(1)得出an的通项公式,然后根据不等式<在求和时进行放缩法的应用,再根据等比数列求和公式进行计算,即可证出.【详解】(1)由函数,在数列中,若,得:,上式两边都倒过来,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴数列是以1为首项,1为公比的等比数列.(2)由(1),可知:=1n,∴an=,n∈N*.∵当n∈N*时,不等式<成立.∴Sn=a1+a2+…+an===﹣•<.∴.【点睛】本题主要考查数列与函数的综合应用,根据条件推出数列的递推公式,由递推公式推出通项公式与放缩法的应用是解决本题的两个关键点,属于中档题.20、(1);(2)【解析】

(1)由知:,利用等比数列的通项公式即可得出;(2)bn=|11﹣2n|,设数列{11﹣2n}的前n项和为Tn,则.当n≤5时,Sn=Tn;当n≥6时,Sn=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.21、(1)证明见解析,(2)①②【解析】

(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论