版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市重庆一中下学期高三第三次质量考评试卷新高考数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.2.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-23.已知集合,定义集合,则等于()A. B.C. D.4.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.5.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H7.复数的模为().A. B.1 C.2 D.8.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}9.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.10.执行如图所示的程序框图,输出的结果为()A. B. C. D.11.已知集合,则=A. B. C. D.12.已知,且,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为_____________.14.的展开式中常数项是___________.15.已知,,且,则的最小值是______.16.若且时,不等式恒成立,则实数a的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.18.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.19.(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.20.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.21.(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.768381252622.(10分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.2、D【解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.3、C【解析】
根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.4、A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.5、A【解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.6、C【解析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.7、D【解析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.8、C【解析】
解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.9、B【解析】
根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题10、D【解析】
由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.11、C【解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.12、A【解析】
由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,,所以.故选:A.【点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可得,,解不等式可求.【详解】解:由题意可得,,解可得,,故答案为.【点睛】本题主要考查了函数的定义域的求解,属于基础题.14、-160【解析】试题分析:常数项为.考点:二项展开式系数问题.15、1【解析】
先将前两项利用基本不等式去掉,,再处理只含的算式即可.【详解】解:,因为,所以,所以,当且仅当,,时等号成立,故答案为:1.【点睛】本题主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题.16、【解析】
将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范围是:.故答案为:.【点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)见证明【解析】
(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而,两边取对数,然后再证明恒成立即可,构造函数,,通过求导证明即可.【详解】解:(Ⅰ)的定义域为,.由是减函数得,对任意的,都有恒成立.设.∵,由知,∴当时,;当时,,∴在上单调递增,在上单调递减,∴在时取得最大值.又∵,∴对任意的,恒成立,即的最大值为.∴,解得.(Ⅱ)由是减函数,且可得,当时,,∴,即.两边同除以得,,即.从而,所以①.下面证;记,.∴,∵在上单调递增,∴在上单调递减,而,∴当时,恒成立,∴在上单调递减,即时,,∴当时,.∵,∴当时,,即②.综上①②可得,.【点睛】本题考查了导数与函数的单调性的关系,考查了函数的最值,考查了构造函数的能力,考查了逻辑推理能力与计算求解能力,属于难题.,18、(1)(2)【解析】
(1)依题意,任意角的三角函数的定义可知,,进而求出.在利用余弦的和差公式即可求出.(2)根据钝角的终边与单位圆交于点,且点的横坐标是,得出,进而得出,利用正弦的和差公式即可求出,结合为锐角,为钝角,即可得出的值.【详解】解:因为锐角的终边与单位圆交于点,点的纵坐标是,所以由任意角的三角函数的定义可知,.从而.(1)于是.(2)因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以从而.【点睛】本题本题考查正弦函数余弦函数的定义,考查正弦余弦的两角和差公式,是基础题.19、(1)见解析;(2)【解析】
(1)要证明PC⊥面ADE,由已知可得AD⊥PC,只需满足即可,从而得到点E为中点;(2)求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积,求解二面角P﹣AE﹣D的余弦值.【详解】(1)法一:要证明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在点E为PC中点.法二:建立如图所示的空间直角坐标系D-XYZ,由题意知PD=CD=1,,设,,,由,得,即存在点E为PC中点.(2)由(1)知,,,,,,设面ADE的法向量为,面PAE的法向量为由的法向量为得,得,同理求得所以,故所求二面角P-AE-D的余弦值为.【点睛】本题考查二面角的平面角的求法,考查直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.20、(1);(2).【解析】
(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得:,且为锐角(2)【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.21、(1)不同的样本的个数为.(2)①分布列见解析,.②线性回归方程为.可预测该同学的物理成绩为96分.【解析】
(1)按比例抽取即可,再用乘法原理计算不同的样本数.(2)名学生中物理和数学都优秀的有3名学生,任取3名学生,都优秀的学生人数服从超几何分布,故可得其概率分布列及其数学期望.而线性回归方程的计算可用给出的公式计算,并利用得到的回归方程预测该同学的物理成绩.【详解】(1)依据分层抽样的方法,24名女同学中应抽取的人数为名,18名男同学中应抽取的人数为名,故不同的样本的个数为.(2)①∵7名同学中数学和物理成绩均为优秀的人数为3名,∴的取值为0,1,2,3.∴,,,.∴的分布列为0123∴.②∵,.∴线性回归方程为.当时,.可预
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- MCU检测统一标准制度
- 信息及其特征说课浅析
- 算法设计与分析 课件 8.2-分支限界 - 基本思想
- 2024年广州道路运输客运从业资格证考试
- 2024年c1道路客运从业资格证模拟考试
- 2024年通辽办理客运从业资格证版试题
- 吉首大学《高级和声学》2021-2022学年第一学期期末试卷
- 24秋人教版九年级语文上学期期中模拟试卷
- 2024年供销宿舍租房合同范本
- 吉林师范大学《中国现代史专题》2021-2022学年第一学期期末试卷
- 油漆作业风险和隐患辨识、评估分级与控制措施一览表
- 流体力学期末复习试题含答案(大学期末复习资料)
- HG∕T 5248-2017 风力发电机组叶片用环氧结构胶粘剂
- 内外部项目合作管理制度
- 输尿管软镜的手术操作
- 高血压病三级预防策略 医学类模板 医学课件
- 教师进企业实践日志
- 2024版新房屋装修贷款合同范本
- 15MW源网荷储一体化项目可行性研究报告写作模板-备案审批
- 北师大版二年级数学上册第五单元《2~5的乘法口诀》(大单元教学设计)
- 少先队辅导员笔试题库附有答案
评论
0/150
提交评论