四川省眉山市永寿高级中学2025届高一数学第二学期期末考试试题含解析_第1页
四川省眉山市永寿高级中学2025届高一数学第二学期期末考试试题含解析_第2页
四川省眉山市永寿高级中学2025届高一数学第二学期期末考试试题含解析_第3页
四川省眉山市永寿高级中学2025届高一数学第二学期期末考试试题含解析_第4页
四川省眉山市永寿高级中学2025届高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省眉山市永寿高级中学2025届高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是第二象限角,且,则的值为A. B. C. D.2.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.603.计算:的结果为()A.1 B.2 C.-1 D.-24.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同5.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.6.如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A. B. C. D.7.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.8.化简的结果是()A. B. C. D.9.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.10.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形二、填空题:本大题共6小题,每小题5分,共30分。11.过点且与直线l:垂直的直线方程为______.(请用一般式表示)12.在等比数列中,,的值为________13.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.14.设,其中,则的值为________.15.若函数的图象过点,则___________.16.已知,,则______,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.18.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.19.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.20.在中,内角、、所对的边分别为,,,且满足.(1)求角的大小;(2)若,是方程的两根,求的值.21.已知集合,数列是公比为的等比数列,且等比数列的前三项满足.(1)求通项公式;(2)若是等比数列的前项和,记,试用等比数列求和公式化简(用含的式子表示)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.2、A【解析】

利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.3、B【解析】

利用恒等变换公式化简得的答案.【详解】故答案选B【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.4、A【解析】

根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.5、A【解析】

分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【点睛】本题考查古典概型概率的求法,属于基础题.6、B【解析】

设大圆半径为,小圆半径为,求出白色部分面积和大圆面积,由几何概型概率公式可得.【详解】设大圆半径为,小圆半径为,则整个图形的面积为,白色部分的面积为,所以所求概率.故选:B.【点睛】本题考查几何概型,考查面积型的几何概型,属于基础题.7、D【解析】

先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.8、A【解析】

根据平面向量加法及数乘的几何意义,即可求解,得到答案.【详解】根据平面向量加法及数乘的几何意义,可得,故选A.【点睛】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】

根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.10、D【解析】

先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.12、【解析】

根据等比数列的性质,可得,即可求解.【详解】由题意,根据等比数列的性质,可得,解得.故答案为:【点睛】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.13、【解析】

根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【详解】,又,,时,面积的最大值为.故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.14、【解析】

由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.15、【解析】

由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.16、【解析】

由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【点睛】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在.【解析】

(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【点睛】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范围.点睛:本题考查了平面向量的数量积的应用,三角函数的单调性与最值,三角函数的化简,恒成立问题的处理及分类讨论的数学思想,综合性强.19、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.20、(1);(2)【解析】

(1)由,可得:,再用正弦定理可得:,从而求得的值;(2)根据题意由韦达定理和余弦定理列出关于的方程求解即可.【详解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的两根,得,利用余弦定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论