




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市成安一中2025届数学高一下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角所对的边分别为,若,则此三角形()A.无解 B.有一解 C.有两解 D.解的个数不确定2.设直线与直线的交点为,则到直线的距离最大值为()A. B. C. D.3.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称4.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形5.执行下图所示的程序框图,若输出的,则输入的x为()A.0 B.1 C.0或1 D.0或e6.下列各角中,与角终边相同的角是()A. B. C. D.7.已知,且,则()A. B. C. D.8.设为中的三边长,且,则的取值范围是()A. B.C. D.9.已知为定义在上的函数,其图象关于轴对称,当时,有,且当时,,若方程()恰有5个不同的实数解,则的取值范围是()A. B. C. D.10.直线的斜率是()A. B.13 C.0 D.二、填空题:本大题共6小题,每小题5分,共30分。11.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.12.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.13.已知数列的前n项和,则___________.14.在中,,则_____________15.已知角满足且,则角是第________象限的角.16.的值域是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.18.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定是否是数列中的项?19.在平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为.(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于点,当长最小时,求直线的方程;(3)设是圆上任意两点,点关于轴的对称点,若直线分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.20.在直角坐标系中,,,点在直线上.(1)若三点共线,求点的坐标;(2)若,求点的坐标.21.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用正弦定理求,与比较的大小,判断B能否取相应的锐角或钝角.【详解】由及正弦定理,得,,B可取锐角;当B为钝角时,,由正弦函数在递减,,可取.故选C.【点睛】本题考查正弦定理,解三角形中何时无解、一解、两解的条件判断,属于中档题.2、A【解析】
先求出的坐标,再求出直线所过的定点,则所求距离的最大值就是的长度.【详解】由可以得到,故,直线的方程可整理为:,故直线过定点,因为到直线的距离,当且仅当时等号成立,故,故选A.【点睛】一般地,若直线和直线相交,那么动直线()必过定点(该定点为的交点).3、A【解析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.4、A【解析】
根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.5、C【解析】
根据程序框图,分两种情况讨论,即可求得对应的的值.【详解】当输出结果为时.当,则,解得当,则,解得综上可知,输入的或故选:C【点睛】本题考查了程序框图的简单应用,指数方程与对数方程的解法,属于基础题.6、B【解析】
给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.7、D【解析】
首先根据,求得,结合角的范围,利用平方关系,求得,利用题的条件,求得,之后将角进行配凑,使得,利用正弦的和角公式求得结果.【详解】因为,所以,因为,所以.因为,,所以,所以,故选D.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.8、B【解析】
由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.9、C【解析】当时,有,所以,所以函数在上是周期为的函数,从而当时,,有,又,即,有易知为定义在上的偶函数,所以可作出函数的图象与直线有个不同的交点,所以,解得,故选C.点睛:本题主要考查了函数的奇偶性、周期性、对称性,函数与方程等知识的综合应用,着重考查了数形结合思想研究直线与函数图象的交点问题,解答时现讨论得到分段函数的解析式,然后做出函数的图象,将方程恰有5个不同的实数解转化为直线与函数的图象由5个不同的交点,由数形结合法列出不等式组是解答的关键.10、A【解析】
由题得即得直线的斜率得解.【详解】由题得,所以直线的斜率为.故选:A【点睛】本题主要考查直线的斜率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型的应用,意在考查学生解决问题的能力.12、【解析】
,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.13、17【解析】
根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.14、【解析】
先由正弦定理得到,再由余弦定理求得的值.【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题.15、三【解析】
根据三角函数在各个象限的符号,确定所在象限.【详解】由于,所以为第三、第四象限角;由于,所以为第二、第三象限角.故为第三象限角.故答案为:三【点睛】本小题主要考查三角函数在各个象限的符号,属于基础题.16、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.18、(1)(2)是数列中的第项【解析】
(1)直接利用等差数列的公式计算得到通项公式.(2)将3998代入通项公式,是否有整数解.【详解】(1)设数列的公差为,由题意有,解得则数列的通项公式为,(2)假设是数列中的项,有,得,故是数列中的第项【点睛】本题考查了等差数列的公式,属于简单题.19、(1);(1);(3)定值为.【解析】试题分析:(1)求出点到直线的距离,进而可求圆的半径,即可得到圆的方程;(1)设直线的方程,利用直线与圆相切,及基本不等式,可求长最小时,直线的方程;(3)设,则,求出直线,分别与轴交点,进而可求的值.试题解析:(1)因为点到直线的距离为,所以圆的半径为,故圆的方程为.(1)设直线的方程为,即,由直线与圆相切,得,即,,当且仅当时取等号,此时直线的方程为,所以当长最小进,直线的方程为.(3)设点,则,直线与轴交点为,则,直线与轴交点为,则,所以,故为定值1.考点:1.直线和圆的方程的应用;1.直线与圆相交的性质.20、(1);(2).【解析】
(1)三点共线,则有与共线,由向量共线的坐标运算可得点坐标;(2),则,由向量数量积的坐标运算可得【详解】设,则,(1)因为三点共线,所以与共线,所以,,点的坐标为.(2)因为,所以,即,,点的坐标为.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机基础知识点更新的试题及答案
- 西北大学《诊断学(一)》2023-2024学年第二学期期末试卷
- 2024-2025学年贵州省黔东南州凯里六中学初三全真四模英语试题试卷含答案
- 福建省福州市第一中学2024-2025学年高中毕业班第三次诊断性测试语文试题试卷含解析
- 湖北师范大学文理学院《数字影像合成》2023-2024学年第二学期期末试卷
- 2025【店铺转让合同范本】商业转让合同模板
- 宠物营养对免疫系统的影响及试题答案
- 张家口市阳原县文职辅警招聘考试真题
- 学校食堂等集中用餐单位落实“日管控 周排查月调度”风险防控机制指引(试行)
- 2025年全国爱卫生日健康教育宣传主题班会课件
- 数字电子技术基础第3章数字电子技术基础课件
- 中式烹调师初级试卷
- 高考倒计时60天课件
- 幼儿园绘本故事:《十二生肖》 课件
- (完整版)人教版小学3-6年级英语单词表-可直接打印
- 机电安装总进度计划横道图
- 起重吊装作业安全综合验收记录表
- 园林绿化工程监理实施细则(完整版)
- 梦想(英语演讲稿)PPT幻灯片课件(PPT 12页)
- 中国联通员工绩效管理实施计划方案
- 法院刑事审判庭速裁庭廉政风险防控责任清单
评论
0/150
提交评论