河北省张家口市宣化一中2025届高一下数学期末联考试题含解析_第1页
河北省张家口市宣化一中2025届高一下数学期末联考试题含解析_第2页
河北省张家口市宣化一中2025届高一下数学期末联考试题含解析_第3页
河北省张家口市宣化一中2025届高一下数学期末联考试题含解析_第4页
河北省张家口市宣化一中2025届高一下数学期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省张家口市宣化一中2025届高一下数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.边长为的正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,则直线与平面所成角的正弦值为()A. B. C. D.2.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2B.若,则a>bC.若a3>b3且ab<0,则D.若a2>b2且ab>0,则3.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.4.已知变量,满足约束条件则取最大值为()A. B. C.1 D.25.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或6.已知直线l过点且与直线垂直,则l的方程是()A. B.C. D.7.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=8.在直三棱柱中,底面为直角三角形,,,是上一动点,则的最小值是()A. B. C. D.9.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等10.在区间随机取一个实数,则的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于下列数排成的数阵:它的第10行所有数的和为________12.如图记录了甲乙两名篮球运动员练习投篮时,进行的5组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则______,_________.13.已知函数,为的反函数,则_______(用反三角形式表示).14.和的等差中项为__________.15.若是方程的解,其中,则______.16.已知向量,的夹角为,若,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)求样本中成绩在分的学生人数;(3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.18.在平面直角坐标系中,直线,.(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;(2)已知点,若直线上存在点满足条件,求实数的取值范围.19.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.20.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.21.已知函数.(I)求的最小正周期;(II)求在上的最大值与最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

在正方形中连接,交于点,根据正方形的性质,在折叠图中平面,得到,从而平面,面平面,则是在平面上的射影,找到直线与平面所所成的角.然后在直角三角中求解.【详解】如图所示:在正方形中连接,交于点,在折叠图,连接,因为,所以平面,所以,又因为,所以平面,又因为平面,所以平面,则是在平面上的射影,所以即为所求.因为故选:D【点睛】本题主要考查了折叠图问题,还考查了推理论证和空间想象的能力,属于中档题.2、C【解析】

根据不等式的性质,对A、B、C、D四个选项通过举反例进行一一验证.【详解】A.若a>b,则ac2>bc2(错),若c=0,则A不成立;B.若,则a>b(错),若c<0,则B不成立;C.若a3>b3且ab<0,则(对),若a3>b3且ab<0,则D.若a2>b2且ab>0,则(错),若,则D不成立.故选:C.【点睛】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单.两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.3、A【解析】

可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【点睛】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题4、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.5、C【解析】

由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.6、A【解析】

直线2x–3y+1=0的斜率为则直线l的斜率为所以直线l的方程为故选A7、D【解析】

由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.8、B【解析】

连,沿将展开与在同一个平面内,不难看出的最小值是的连线,由余弦定理即可求解.【详解】解:连,沿将展开与在同一个平面内,如图所示,

连,则的长度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故选B.【点睛】本题考查棱柱的结构特征,余弦定理的应用,是中档题.9、C【解析】

由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【点睛】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.10、C【解析】

利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。【详解】因为的长度为3,在区间的长度为9,所以概率为。故选:C【点睛】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.12、3.5.【解析】

根据茎叶图,将两组数据按照从小到大顺序排列,由中位数和平均数相等,即可解得的值.【详解】甲乙两组数据的中位数相等,平均数也相等对于甲组将数据按照从小到大顺序排列后可知,中位数为65.所以乙组中位数也为65.根据乙组数据可得则由两组的平均数相等,可知两组的总数也相等,即解得故答案为:;【点睛】本题考查了茎叶图的简单应用,由茎叶图求中位数和平均数,属于基础题.13、【解析】

先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单14、【解析】

设和的等差中项为,利用等差中项公式可得出的值.【详解】设和的等差中项为,由等差中项公式可得,故答案为:.【点睛】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.15、【解析】

把代入方程2cos(x+α)=1,化简根据α∈(0,2π),确定函数值的范围,求出α即可.【详解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案为【点睛】本题考查三角函数值的符号,三角函数的定义域,考查逻辑思维能力,属于基础题.16、【解析】

由,展开后进行计算,得到的值,从而得到答案.【详解】因为向量,的夹角为,若,,所以,所以.故答案为:.【点睛】本题考查求向量的模长,向量的数量积运算,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)48;(2)30;(3)【解析】

(1)设样本容量为,列方程求解即可;(2)根据比例列式求解即可;(3)根据比例得成绩在90.5分以上的同学有6人,抽取2人参加决赛,列举出总的基本事件个数,然后列举出最高分甲被抽到的基本事件个数,根据概率公式可得结果.【详解】解:(1)设样本容量为,则,解得,所以样本的容量是48;(2)样本中成绩在分的学生人数为:人;(3)样本中成绩在90.5分以上的同学有人,设这6名同学分别为,其中就是甲,从这6名同学中随机地抽取2人参加决赛有:共15个基本事件,其中最高分甲被抽到的有共5个基本事件,则最高分甲被抽到的概率为.【点睛】本题考查频率,频数,样本容量间的关系,考查古典概型的概率公式,重点是列举出总的基本事件和满足题目要求的基本事件,是基础题.18、(1)过定点,定点坐标为;(2)或.【解析】

(1)假设直线过定点,则关于恒成立,利用即可结果;(2)直线上存在点,求得,故点在以为圆心,2为半径的圆上,根据题意,该圆和直线有交点,即圆心到直线的距离小于或等于半径,由此求得实数的取值范围.【详解】(1)假设直线过定点,则,即关于恒成立,∴,∴,所以直线过定点,定点坐标为(2)已知点,,设点,则,,∵,∴,∴所以点的轨迹方程为圆,又点在直线:上,所以直线:与圆有公共点,设圆心到直线的距离为,则,解得实数的范围为或.【点睛】本题主要考查直线过定点问题以及直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.19、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】

(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.20、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和三类,可求解.试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴数列是等差数列,设的前项和为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论