2025届安徽省宣城市七校高一下数学期末质量检测模拟试题含解析_第1页
2025届安徽省宣城市七校高一下数学期末质量检测模拟试题含解析_第2页
2025届安徽省宣城市七校高一下数学期末质量检测模拟试题含解析_第3页
2025届安徽省宣城市七校高一下数学期末质量检测模拟试题含解析_第4页
2025届安徽省宣城市七校高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省宣城市七校高一下数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.己知关于的不等式解集为,则突数的取值范围为()A. B.C. D.2.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg3.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.160.30.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26 C.0.56 D.0.744.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.65.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,6.总体由编号为01,02,…,60的60个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,则选出的第5个个体的编号为()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.147.在中,若,则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形8.平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为A. B. C. D.9.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.10.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.90二、填空题:本大题共6小题,每小题5分,共30分。11.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.12.若点,是圆C:上不同的两点,且,则的值为______.13.已知正实数x,y满足2x+y=2,则xy的最大值为______.14.已知数列的前项和为,则其通项公式__________.15.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________16.程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.18.已知向量,(1)若,求的坐标;(2)若与垂直,求的值.19.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值20.如图,四面体中,分别是的中点,,.(1)求证:平面;(2)求三棱锥的体积.21.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用绝对值的几何意义求解,即表示数轴上与和-2的距离之和,其最小值为.【详解】∵,∴由解集为,得,解得.故选C.【点睛】本题考查绝对值不等式,考查绝对值的性质,解题时可按绝对值定义去绝对值符号后再求解,也可应用绝对值的几何意义求解.不等式解集为,可转化为的最小值不小于1,这是解题关键.2、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.3、D【解析】

利用互斥事件概率计算公式直接求解.【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:.故选:D.【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题.4、C【解析】

由又,可得公差,从而可得结果.【详解】是等差数列又,∴公差,,故选C.【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.5、D【解析】

根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.6、C【解析】

通过随机数表的相关运算即可得到答案.【详解】随机数表第1行的第8列和第9列数字为42,由左至右选取两个数字依次为42,36,03,14,22,选出的第5个个体的编号为22,故选C.【点睛】本题主要考查随机数法,按照规则进行即可,难度较小.7、D【解析】

由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】解:为非零实数),可得:,由正弦定理,可得:,对于A,时,可得:,可得,即为直角,可得是直角三角形,故正确;对于B,时,可得:,可得为最大角,由余弦定理可得,可得是锐角三角形,故正确;对于C,时,可得:,可得为最大角,由余弦定理可得,可得是钝角三角形,故正确;对于D,时,可得:,可得,这样的三角形不存在,故错误.故选:D.【点睛】本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想,属于基础题.8、A【解析】

试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为所成的角,即为,故所成角的正弦值为,选A.【点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.9、B【解析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.10、C【解析】

根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【点睛】本题考查了圆锥体的体积公式,属于基础题.12、【解析】

由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.13、【解析】

由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.14、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.15、(-∞,1)【解析】

由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.16、【解析】

设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据二次函数的单调性得在区间,单调递减,在区间单调递增,从得而得;(2)①当时,在区间上是单调函数,则,利用不等式的放缩法求得;②当时,对进行分类讨论,求得;从而求得k的最大值为.【详解】(1)当时,,结合图像可知,在区间,单调递减,在区间单调递增..(2)①当时,在区间上是单调函数,则,而,,,∴.②当时,的对称轴在区间内,则,又,(ⅰ)当时,有,,则,(ⅱ)当时,有,则,所以,对任意的都有,综上所述,时在区间的最大值为,所以k的最大值为.【点睛】本题考查一元二次函数的图象与性质、含参问题中的恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的完整性.18、(1);(2)【解析】

(1)直接由向量的数乘及减法运算求解;(2)由向量的数乘及减法运算求得的坐标,再由向量垂直的坐标运算求解.【详解】(1).(2)与垂直,,即,∴.【点睛】本题考查平面向量的坐标运算、考查向量垂直的坐标表示,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.19、(1),,.(2).【解析】

(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为的形式,三角函数的平移变换是易错点.20、(1)见解析;(2)【解析】

(1)连接,由等腰三角形三线合一,可得,,再勾股定理可得,进而根据线面垂直的判定定理得到平面;(2)根据等积法可得,结合(1)中结论,可得即为棱锥的高,代入棱锥的体积公式,可得答案.【详解】证明:(1)连接.,,.,为中点,,,为中点,,,在中,,,,,,即.又,,平面平面.(2)等边的面积为,为中点而,.【点睛】本题考查的知识点是直线与平面垂直的判定,棱锥的体积公式,熟练掌握空间直线与直线垂直、直线与平面垂直之间的转化关系是解答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论