2025届新疆石河子二中数学高一下期末学业质量监测模拟试题含解析_第1页
2025届新疆石河子二中数学高一下期末学业质量监测模拟试题含解析_第2页
2025届新疆石河子二中数学高一下期末学业质量监测模拟试题含解析_第3页
2025届新疆石河子二中数学高一下期末学业质量监测模拟试题含解析_第4页
2025届新疆石河子二中数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆石河子二中数学高一下期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.2.设满足约束条件,则的最大值为()A.3 B.9 C.12 D.153.已知点,则向量()A. B. C. D.4.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.6.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.147.如图,平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,则异面直线BD与CE所成的角为()A. B. C. D.8.如图,正方形的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是()cm.A.12 B.16 C. D.9.已知,,,则的最小值为A. B. C. D.410.为得到函数的图象,只需将函数图象上的所有点()A.向右平移3个单位长度 B.向右平移个单位长度C.向左平移3个单位长度 D.向左平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则_____.12.数列中,为的前项和,若,则____.13.数列的前项和为,若对任意,都有,则数列的前项和为________14.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.15.函数的最小正周期为______________.16.已知向量,若向量与垂直,则等于_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,,且满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.18.的内角所对的边分别为,向量,若.(1)求角的大小;(2)若,求的值.19.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?20.已知函数.(1)求函数的最小正周期;(2)若函数在的最大值为2,求实数的值.21.在中,角所对的边分别为.且.(1)求的值;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.2、C【解析】所以,过时,的最小值为12。故选C。3、D【解析】

利用终点的坐标减去起点的坐标,即可得到向量的坐标.【详解】∵点,,∴向量,,.故选:D.【点睛】本题考查向量的坐标表示,考查运算求解能力,属于基础题.4、D【解析】

分别考虑与的极限,然后作比较.【详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【点睛】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.5、A【解析】

设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6、C【解析】

易得从第三项开始数列的每项都为前两项之和,再求解即可.【详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【点睛】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.7、C【解析】

以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出异面直线BD与CE所成的角.【详解】∵平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设AB=1,则B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),设异面直线BD与CE所成的角为θ,则cosθ,∴θ.∴异面直线BD与CE所成的角为.故选:C.【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.8、B【解析】

根据直观图与原图形的关系,可知原图形为平行四边形,结合线段关系即可求解.【详解】根据直观图,可知原图形为平行四边形,因为正方形的边长为2cm,所以原图形cm,,则,所以原平面图形的周长为,故选:B.【点睛】本题考查了平面图形直观图与原图形的关系,由直观图求原图形面积方法,属于基础题.9、C【解析】

化简条件得,化简,利用基本不等式,即可求解,得到答案.【详解】由题意,知,可得,则,当且仅当时,即时取得等号,所以,即的最小值为,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件:一正、二定、三相等是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】

先化简得,根据函数图像的变换即得解.【详解】因为,所以函数图象上的所有点向右平移个单位长度可得到函数的图象.故选:B【点睛】本题主要考查三角函数图像的变换,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据已知条件求得的值,平方后利用同角三角函数的基本关系式求得的值.【详解】由得,两边平方并化简得,由于,所以.而,由于,所以【点睛】本小题主要考查同角三角函数的基本关系式,考查两角和的正弦公式,考查化归与转化的数学思想方法,属于基础题.12、【解析】

由,结合等比数列的定义可知数列是以为首项,为公比的等比数列,代入等比数列的求和公式即可求解.【详解】因为,所以,又因为所以数列是以为首项,为公比的等比数列,所以由等比数列的求和公式得,解得【点睛】本题考查利用等比数列的定义求通项公式以及等比数列的求和公式,属于简单题.13、【解析】

根据数列的递推公式,求得,再结合等差等比数列的前项和公式,即可求解,得到答案.【详解】由题意,数列满足,…①,…②由①-②,可得,即当时,,所以,则数列的前项和为.【点睛】本题主要考查了数列的递推关系式的应用,以及等差、等比数列的前项和的应用,其中解答中熟练应用熟练的递推公式得到数列的通项公式,再结合等差、等比数列的前项和公式的准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.14、【解析】

先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意.所以方差为.故答案为:.【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.15、【解析】

利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.16、2【解析】

根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由题意知,数列是等差数列,可设该数列的公差为,根据题中条件列方程解出的值,再利用等差数列的通项公式可求出数列的通项公式;(2)先求出数列的通项公式,并将该数列的通项裂项,然后利用裂项法求出数列的前项和.【详解】(1)对任意的,,则数列是等差数列,设该数列的公差为,则,解得,;(2),因此,.【点睛】本题考查等差数列的通项公式,同时也考查了裂项求和法,解题时要熟悉等差数列的几种判断方法,同时也要熟悉裂项求和法对数列通项结构的要求,考查运算求解能力,属于中等题.18、(1);(2)2【解析】

(1)根据向量的数量积定义,结合余弦的倍角公式,即可求得;(2)由余弦定理,及(1)中所求角度,即可直接求得.【详解】(1)由已知易得:所以,又故.(2)由及余弦定理可得:所以,所以得:(舍)所以.【点睛】本题考查余弦定理,余弦的倍角公式,涉及向量的数量积,属基础题.19、(1)(2)【解析】试题分析:(1)根据若做广告宣传,广告费为n千元比广告费为千元时多卖出件,可得,利用叠加法可求得.(2)根据题意在时,利润,可利用求最值.试题解析:(1)设表示广告费为0元时的销售量,由题意知,由叠加法可得即为所求。(2)设当时,获利为元,由题意知,,欲使最大,则,易知,此时.考点:叠加法求通项,求最值.20、(1);(2)或【解析】

(1)根据二倍角公式进行整理化简可得,从而可得最小正周期;(2)将通过换元的方式变为,;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得的值.【详解】(1)最小正周期(2)令,则由得①当,即时当时,由,解得(舍去)②当,即时当时,由得,解得或(舍去)③当,即时当时,,由,解得综上,或【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论