延安市重点中学2025届数学高一下期末达标检测试题含解析_第1页
延安市重点中学2025届数学高一下期末达标检测试题含解析_第2页
延安市重点中学2025届数学高一下期末达标检测试题含解析_第3页
延安市重点中学2025届数学高一下期末达标检测试题含解析_第4页
延安市重点中学2025届数学高一下期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

延安市重点中学2025届数学高一下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是两条不同的直线,是三个不同的平面,则下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则2.阅读如图所示的程序,若运该程序输出的值为100,则的面的条件应该是()A. B. C. D.3.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.4.在正四棱柱中,,则点到平面的距离是()A. B. C. D.5.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元6.已知直线经过,两点,则直线的斜率为A. B. C. D.7.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=08.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或99.下列函数中,在区间上为减函数的是A. B. C. D.10.若平面α∥平面β,直线平面α,直线n⊂平面β,则直线与直线n的位置关系是()A.平行 B.异面C.相交 D.平行或异面二、填空题:本大题共6小题,每小题5分,共30分。11.设满足约束条件,则的最小值为__________.12.设()则数列的各项和为________13.设数列满足,,,,______.14.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____15.已知函数,若,且,则__________.16.若,且,则=_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.18.已知函数(1)解关于的不等式;(2)若,令,求函数的最小值.19.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.20.已知数列的前n项和为,且,求数列的通项公式.21.在平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为.(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于点,当长最小时,求直线的方程;(3)设是圆上任意两点,点关于轴的对称点,若直线分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个相交平面内的直线也可以平行,所以B不正确;垂直于同一个平面的两个平面不一定垂直,也可能平行或相交,所以D不正确;根据面面垂直的判定定理知C正确.考点:空间直线、平面间的位置关系.【详解】请在此输入详解!2、D【解析】

根据输出值和代码,可得输出的最高项的值,进而结合当型循环结构的特征得判断框内容.【详解】根据循环体,可知因为输出的值为100,所以由等差数列求和公式可知求和到19停止,结合当型循环结构特征,可知满足条件时返回执行循环体,因而判断框内的内容为,故选:D.【点睛】本题考查了当型循环结构的代码应用,根据输出值选择条件,属于基础题.3、A【解析】

在空间直角坐标系中,点关于轴对称的点的坐标为.【详解】根据对称性,点关于轴对称的点的坐标为.故选A.【点睛】本题考查空间直角坐标系和点的对称,属于基础题.4、A【解析】

计算的面积,根据可得点到平面的距离.【详解】中,,,∴的边上的高为,∴,设到平面的距离为,则,又,∴,解得.故选A.【点睛】本题涉及点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,也可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.5、B【解析】

试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程6、C【解析】

由两点法求斜率的公式可直接计算斜率值.【详解】直线经过,两点,直线的斜率为.【点睛】本题考查用两点法求直线斜率,属于基础题.7、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。8、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。9、D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性10、D【解析】

由面面平行的定义,可得两直线无公共点,可得所求结论.【详解】平面α∥平面β,可得两平面α,β无公共点,即有直线与直线也无公共点,可得它们异面或平行,故选:D.【点睛】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.12、【解析】

根据无穷等比数列的各项和的计算方法,即可求解,得到答案.【详解】由题意,数列的通项公式为,且,所以数列的各项和为.故答案为:.【点睛】本题主要考查了无穷等比数列的各项和的求解,其中解答中熟记无穷等比数列的各项和的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.13、8073【解析】

对分奇偶讨论求解即可【详解】当为偶数时,当为奇数时,故当为奇数时,故故答案为8073【点睛】本题考查数列递推关系,考查分析推理能力,对分奇偶讨论发现规律是解决本题的关键,是难题14、【解析】

根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。15、2【解析】不妨设a>1,

则令f(x)=|loga|x-1||=b>0,

则loga|x-1|=b或loga|x-1|=-b;

故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,

故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.16、【解析】

由的值及,可得的值,计算可得的值.【详解】解:由,且,由,可得,故,故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)根据直线与直线垂直,求得直线的斜率为,再利用直线的点斜式方程,即可求解;(Ⅱ)设所求直线方程为,由点到直线的距离公式,列出方程,求得的值,即可得到答案.【详解】(Ⅰ)由题意,设所求直线的斜率为,由直线的斜率为,因为直线与直线垂直,所以直线的斜率为,所以所求直线的方程为直线的方程为:,即.(Ⅱ)设所求直线方程为,即,直线上任取一点,由点到直线的距离公式,可得,解得或-4,所以所求直线方程为:或.【点睛】本题主要考查了直线方程的求解,两直线的位置关系的应用,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.18、(1)答案不唯一,具体见解析(2)【解析】

(1)讨论的范围,分情况得的三个答案.(2)时,写出表达式,利用均值不等式得到最小值.【详解】(1)①当时,不等式的解集为,②当时,不等式的解集为,③当时,不等式的解集为(2)若时,令(当且仅当,即时取等号).故函数的最小值为.【点睛】本题考查了解不等式,均值不等式,函数的最小值,意在考查学生的综合应用能力.19、(1)见解析;(2)【解析】

(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果.【详解】(1)因为四边形是正方形,所以折起后,且,因为,所以是正三角形,所以.又因为正方形中,为的中点,所以,所以,所以,所以,又因为,所以平面.又平面,所以平面平面.(2)取中点,连结,,则,,又,则平面.又平面,所以平面平面.在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.在中,,,.∴,,故,,,∴,.设平面的一个法向量为,则由,得,令,得,,∴.因为平面的法向量为,则,又二面角为锐二面角,∴二面角的余弦值为.【点睛】本题主要考查面面垂直的判定,以及二面角的余弦值,熟记面面垂直的判定定理、以及二面角的向量求法即可,属于常考题型.20、【解析】

利用公式,计算的通项公式,再验证时的情况.【详解】当时,;当时,不满足上式.∴【点睛】本题考查了利用求数列通项公式,忽略的情况是容易犯的错误.21、(1);(1);(3)定值为.【解析】试题分析:(1)求出点到直线的距离,进而可求圆的半径,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论