版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省豫北豫南名校2025届高一下数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.2.已知函数,且的图象向左平移个单位后所得的图象关于坐标原点对称,则的最小值为()A. B. C. D.3.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.4.已知,且,,则()A. B. C. D.5.直线的倾斜角为A. B. C. D.6.若直线经过A(1,0),B(2,3)两点,则直线A.135° B.120° C.60° D.45°7.已知x,x134781016y57810131519则线性回归方程y=A.(8,10) B.(8,11) C.(7,10) D.(7,11)8.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>4? B.k>5? C.k>6? D.k>7?9.正方体中,异面直线与BC所成角的大小为()A. B. C. D.10.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足:,,则使成立的的最大值为_______12.在数列中,,,则________.13.已知函数,的最大值为_____.14.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.15.已知数列满足,,,则数列的通项公式为________.16.在中,,,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,已知,,,,设.(1)求(用表示);(2)求的最小值.(结果精确到米)18.设向量,,令函数,若函数的部分图象如图所示,且点的坐标为.(1)求点的坐标;(2)求函数的单调增区间及对称轴方程;(3)若把方程的正实根从小到大依次排列为,求的值.19.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.20.已知,是实常数.(1)当时,判断函数的奇偶性,并给出证明;(2)若是奇函数,不等式有解,求的取值范围.21.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.2、C【解析】
由函数图像的平移变换得的图象向左平移个单位,得到,再结合三角函数的性质运算即可得解.【详解】解:,将的图象向左平移个单位,得到,因为平移后图象关于对称,所以,可得,,,,因为,所以的最小值为,故选C.【点睛】本题考查了函数图像的平移变换及三角函数的性质,属基础题.3、C【解析】
作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.4、C【解析】
根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【详解】解:因为,.因为,所以.因为,,所以.所以.故选:【点睛】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.5、D【解析】
求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.6、C【解析】
利用斜率公式求出直线AB,根据斜率值求出直线AB的倾斜角.【详解】直线AB的斜率为kAB=3-02-1【点睛】本题考查直线的倾斜角的求解,考查直线斜率公式的应用,考查计算能力,属于基础题。7、D【解析】
先计算x,【详解】x=线性回归方程y=a+故答案选D【点睛】本题考查了回归方程,回归方程一定过数据中心点.8、B【解析】
分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值,条件框内的语句决定是否结束循环,模拟执行程序即可得到结果.【详解】程序在运行过程中各变量值变化如下:第一次循环k=2,S=2;是第二次循环k=3,S=7;是第三次循环k=4,S=18;是第四次循环k=5,S=41;是第五次循环=6,S=88;否故退出循环的条件应为k>5?,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9、D【解析】
利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.10、B【解析】
根据题意,依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【点睛】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【点睛】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.12、【解析】
由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【点睛】本题考查数量的递推公式同时考查数列的周期性,属于中档题.13、【解析】
化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【点睛】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。14、【解析】
设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【点睛】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.15、.【解析】
由题意得出,可得出数列为等比数列,确定出该数列的首项和公比,可求出数列的通项公式,进而求出数列的通项公式.【详解】设,整理得,对比可得,,即,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故答案为.【点睛】本题考查数列通项的求解,解题时要结合递推式的结构选择合适的方法来求解,同时要注意等差数列和等比数列定义的应用,考查分析问题和解决问题的能力,属于中等题.16、【解析】
由,得到,由三角形的内角和,求出,再由正弦定理求出的值.【详解】因为,,所以,所以,在中,由正弦定理得,所以.【点睛】本题考查正弦定理解三角形,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)米【解析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表达式;(2)在中,由正弦定理,求得,进而可得到,利用三角函数的性质,即可求解.【详解】(1)由题意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因为,所以所以当时,取得最小值最小值约为米.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.18、(1)(2)单调递增区间为;对称轴方程为,;(3)14800【解析】
(1)先求出,令求出点B的坐标;(2)利用复合函数的单调性原理求函数的单调增区间,利用三角函数的图像和性质求对称轴方程;(3)由(2)知对称轴方程为,,所以,,…,,即得解.【详解】解:(1)由已知,得∴令,得,,∴,.当时,,∴得坐标为(2)单调递增区间,得,∴单调递增区间为对称轴,得,∴对称轴方程为,(3)由,得,根据正弦函数图象的对称性,且由(2)知对称轴方程为,∴,,…,∴【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,考查等差数列求和,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1)见解析;(2).【解析】
(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)以菱形对角线交点为原点可建立空间直角坐标系,通过取中点,可证得平面,得到平面的法向量;再通过向量法求得平面的法向量,利用向量夹角公式求得两个法向量夹角的余弦值,进而可求得所求二面角的正弦值.【详解】(1)连接,,分别为,中点为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)设,由直四棱柱性质可知:平面四边形为菱形则以为原点,可建立如下图所示的空间直角坐标系:则:,,,D(0,-1,0)取中点,连接,则四边形为菱形且为等边三角形又平面,平面平面,即平面为平面的一个法向量,且设平面的法向量,又,,令,则,二面角的正弦值为:【点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.20、(1)为非奇非偶函数,证明见解析;(2).【解析】
(1)当时,,计算不相等,也不互为相反数,可得出结论;(2)由奇函数的定义,求出的值,证明在上单调递减,有解,化为有解,求出的值域,即可求解.【详解】(1)为非奇非偶函数.当时,,,,因为,所以不是偶函数;又因为,所以不是奇函数,即为非奇非偶函数.(2)因为是奇函数,所以恒成立,即对恒成立,化简整理得,即.下用定义法研究的单调性;设任意,且,,所以函数在上单调递减,因为有解,且函数为奇函数,所以有解,又因为函数在上单调递减,所以有解,,的值域为,所以,即.【点睛】本题考查函数性质的综合应用,涉及到函数的奇偶性求参数,单调性证明及应用,以及求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商场租赁合同补充协议
- 2025设备类采购合同
- 写婚姻合同范例
- 村级水利施工合同范例
- 床品套装生产合同范例
- 推广协议议合同范例
- 嘉峪关小区照明合同范例
- 内河船装货合同范例
- 定制钢质门合同范例
- 教师授课合同范例
- 微机原理与接口技术智慧树知到期末考试答案章节答案2024年西安工商学院
- 千分尺内校操作指导书
- 个人与公司居间合同范本合集
- 2024年广东能源集团天然气有限公司招聘笔试参考题库附带答案详解
- (2024年)羊水栓塞完整版pptx
- 宁夏回族自治区中卫市沙坡头区2023-2024学年六年级上学期期末语文试卷
- 2022-2023学年江苏省苏州市七年级(上)期末历史试卷(含答案)
- 海绵城市改造工程施工组织设计样本
- 肾病科主任述职报告
- DB11-693-2017 建设工程临建房屋技术标准
- 英语口语考试方案
评论
0/150
提交评论