版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市大团中学2025届数学高一下期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.102.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形3.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.4.在等比数列中,成等差数列,则公比等于()A.1
或
2 B.−1
或
−2 C.1
或
−2 D.−1
或
25.函数的零点所在的区间为()A. B. C. D.6.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则7.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x8.已知等差数列的前项和,若,则()A.25 B.39 C.45 D.549.已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)10.若直线与直线平行,则实数A.0 B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.12.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)13.等比数列前n项和为,若,则______.14.计算:______.15.函数的最小正周期是__________.16.已知向量,,若,则实数___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,成等差数列,分别为的对边,并且,,求.18.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.19.土笋冻是闽南种广受欢迎的特色传统风味小吃某小区超市销售一款土笋冻,进价为每个15元,售价为每个20元.销售的方案是当天进货,当天销售,未售出的全部由厂家以每个10元的价格回购处理.根据该小区以往的销售情况,得到如图所示的频率分布直方图:(1)估算该小区土笋冻日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个土笋冻,假设当天的需求量为个销售利润为元.(i)求关于的函数关系式;(ii)结合上述频率分布直方图,以额率估计概率的思想,估计当天利润不小于650元的概率.20.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.21.在平面直角坐标系中,已知,,动点满足条件.(1)求点的轨迹的方程;(2)设点是点关于直线的对称点,问是否存在点同时满足条件:①点在曲线上;②三点共线,若存在,求直线的方程;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。2、C【解析】
由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.3、B【解析】
利用三角函数的平移和伸缩变换的规律求出即可.【详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.4、C【解析】
设出基本量,利用等比数列的通项公式,再利用等差数列的中项关系,即可列出相应方程求解【详解】等比数列中,设首项为,公比为,成等差数列,,即,或答案选C【点睛】本题考查等差数列和等比数列求基本量的问题,属于基础题5、C【解析】
分别将选项中的区间端点值代回,利用零点存在性定理判断即可【详解】由题函数单调递增,,,则,故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题6、C【解析】
通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【点睛】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.7、D【解析】试题分析:三角函数的平移原则为左加右减上加下减.直接求出平移后的函数解析式即可.解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.考点:函数y=Asin(ωx+φ)的图象变换.8、A【解析】
设等差数列的公差为,从而根据,即可求出,这样根据等差数列的前项和公式即可求出.【详解】解:设等差数列的公差为,则由,得:,,,故选:A.【点睛】本题主要考查等差数列的通项公式和等差数列的前项和公式,属于基础题.9、D【解析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.10、B【解析】
根据两直线的平行关系,列出方程,即可求解实数的值,得到答案.【详解】由题意,当时,显然两条直线不平行,所以;由两条直线平行可得:,解得,当时,直线方程分别为:,,显然平行,符合题意;当时,直线方程分别为,,很显然两条直线重合,不合题意,舍去,所以,故选B.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线平行的条件,准去计算是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.12、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。13、【解析】
根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.14、【解析】
直接利用反三角函数运算法则写出结果即可.【详解】解:.故答案为:.【点睛】本题考查反三角函数的运算法则的应用,属于基础题.15、;【解析】
利用余弦函数的最小正周期公式即可求解.【详解】因为函数,所以,故答案为:【点睛】本题考查了含余弦函数的最小正周期,需熟记求最小正周期的公式,属于基础题.16、【解析】
由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或.【解析】
先算出,从而得到,也就是,结合面积得到,再根据余弦定理可得,故可解得的大小.【详解】∵成等差数列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③联立③与②解得或,综上,或.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.18、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19、(1)(2)(i)();(ii)【解析】
(1)设日需求量为,直接利用频率分布图中的平均数公式估算该小区土笋冻日需求量的平均数;(2)(i)分类讨论得();(ii)由(i)可知,利润,当且仅当日需求量,再利用互斥事件的概率和公式求解.【详解】解:(1)设日需求量为,依题意的频率为;的频率为;的频率为;的频率为.则与的频率为.故该小区土笋冻日需求量的平均数,.(2)(i)当时,;当时,.故()(ii)由(i)可知,利润,当且仅当日需求量.由频率分布直方图可知,日需求量的频率约为,以频率估计概率的思想,估计当天利润不小于元的概率为.【点睛】本题主要考查频率分布直方图中平均数的计算和分段函数解析式的求法,考查互斥事件的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.20、【解析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)由知…①……7分从而……②①②得,即.考点:1.累和法求数列通项公式;2.错位相减法求和21、(1);(2)存在点,直线方程为.【解析】
(1)设,由题意根据两点间的距离公式即可求解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定金合同范本
- 2024年度演艺经纪代理合同2篇
- 二零二四年度云计算服务定制与运维合同
- 二零二四年度电动折叠自行车购销协议3篇
- 短期劳动力雇佣合同04
- 高级定制服装生产与销售合同(04版)
- 二零二四年度社交电商模式创新与合作合同3篇
- 二零二四年度广告媒体投放合作协议
- 二零二四年度地下水监测井建设合同
- 二零二四年度技术转让合同with技术改进与后续支持
- 中学生养成良好学习习惯和行为习惯的主题班会
- 上海市莘庄中学等四校联考2025届高二物理第一学期期中检测试题含解析
- GB/T 44351-2024退化林修复技术规程
- 第10课《我们不乱扔》(课件)-部编版道德与法治二年级上册
- 24春国家开放大学《教育学》期末大作业
- MOOC 自然保护与生态安全:拯救地球家园-暨南大学 中国大学慕课答案
- 23秋国家开放大学《液压气动技术》形考任务1-3参考答案
- 服装流行分析与预测学习通超星课后章节答案期末考试题库2023年
- 小学六年级数学计算题100道(含答案)
- 单位工程施工组织设计实例
- 听李炳亭报告的几点感想
评论
0/150
提交评论