




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州一中2025届高一下数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.2.等比数列的前项和为,,且成等差数列,则等于()A. B. C. D.3.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形4.已知a,b,c为实数,则下列结论正确的是()A.若ac>bc>0,则a>b B.若a>b>0,则ac>bcC.若ac2>bc2,则a>b D.若a>b,则ac2>bc25.若圆心坐标为的圆,被直线截得的弦长为,则这个圆的方程是()A. B.C. D.6.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.7.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.8.函数的定义域是().A. B. C. D.9.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.10.已知向量,,若向量与的夹角为,则实数()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.12.在等比数列中,,公比,若,则的值为.13.在中,角所对的边分别为,,则____14.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.15.若在等比数列中,,则__________.16.某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:制作了如图所示的频率分布表,则抽样总人数为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A组8677809488B组9183?7593其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求的概率.18.在等差数列中,已知,.(I)求数列的通项公式;(II)求.19.某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;(2)同一组数据用该区间的中点值作代表.(i)求这100人月薪收入的样本平均数x和样本方差s2(ii)该校在某地区就业的本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设Ω=[x-s-0.018,x+s+0.018),月薪落在区间Ω左侧的每人收取400元,月薪落在区间方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?参考数据:174≈13.220.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.21.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.2、A【解析】
根据等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得的值.【详解】由于成等差数列,故,即,所以,,所以,故选A.【点睛】本小题主要考查等差中项的性质,考查等比数列基本量的计算,属于基础题.3、C【解析】
由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.4、C【解析】
本题可根据不等式的性质以及运用特殊值法进行代入排除即可得到正确结果.【详解】由题意,可知:对于A中,可设,很明显满足,但,所以选项A不正确;对于B中,因为不知道的正负情况,所以不能直接得出,所以选项B不正确;对于C中,因为,所以,所以,所以选项C正确;对于D中,若,则不能得到,所以选项D不正确.故选:C.【点睛】本题主要考查了不等式性质的应用以及特殊值法的应用,着重考查了推理能力,属于基础题.5、B【解析】
设出圆的方程,求出圆心到直线的距离,利用圆心到直线的距离、半径和半弦长满足勾股定理,求得圆的半径,即可求得圆的方程,得到答案.【详解】由题意,设圆的方程为,则圆心到直线的距离为,又由被直线截得的弦长为,则,所以所求圆的方程为,故选B.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的弦长的应用,其中解答中熟记直线与圆的位置关系,合理利用圆心到直线的距离、半径和半弦长满足勾股定理是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】
先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.7、C【解析】
根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.
则由题意可得:.
可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.8、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.9、A【解析】
把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【详解】设,,,,,,,,,,的最大值是.故选A.【点睛】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.10、B【解析】
根据坐标运算可求得与,从而得到与;利用向量夹角计算公式可构造方程求得结果.【详解】由题意得:,,,解得:本题正确选项:【点睛】本题考查利用向量数量积、模长和夹角求解参数值的问题,关键是能够通过坐标运算表示出向量和模长,进而利用向量夹角公式构造方程.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.12、1【解析】
因为,,故答案为1.考点:等比数列的通项公式.13、【解析】
利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.14、0.4【解析】
根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.15、【解析】
根据等比中项的性质,将等式化成即可求得答案.【详解】是等比数列,若,则.因为,所以,.故答案为:1.【点睛】本题考查等比中项的性质,考查基本运算求解能力,属于容易题.16、20【解析】
总体人数占的概率是1,也可以理解成每个人在整体占的比重一样,所以三组的频率为:,共有14人,即14人占了整体的0.7,那么整体共有人。【详解】前三组,即三组的频率为:,,解得:【点睛】此题考查概率,通过部分占总体的概率即可计算出总体的样本值,属于简单题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)先设在B组中看不清的那个同学的分数为x,分别求得两组的平均数,再由平均数间的关系求解.(2)先求出从A组这5名学生中随机抽取2名同学所有方法数,再用列举的方法得到满足求的方法数,再由古典概型求解.【详解】(1)设在B组中看不清的那个同学的分数为x由题意得解得x=88所以在B组5个分数超过85的有3个所以得分超过85分的概率是(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,则所有共有共10个其中满足求的有:共6个故|的概率为
【点睛】本题主要考查了平均数和古典概型概率的求法,还考查了运算求解的能力,属于中档题.18、(Ⅰ)(Ⅱ)【解析】
(I)将已知条件转为关于首项和公差的方程组,解方程组求出,进而可求通项公式;(II)由已知可得构成首项为,公差为的等差数列,利用等差数列前n项和公式计算即可.【详解】(I)因为是等差数列,,所以解得.则,.(II)构成首项为,公差为的等差数列.则【点睛】本题考查等差数列通项公式和前n项和公式的应用,属于基础题.19、(1)23;(2)(i)2,0.0174【解析】
(1)根据频率分布直方图求出前2组中的人数,由分层抽样得抽取的人数,然后把6人编号,可写出任取2人的所有组合,也可得出获赠智能手机的2人月薪都不低于1.75万元的所有组合,从而可计算出概率.(2)根据频率分布直方图计算出均值和方差,然后求出区间Ω,结合频率分布直方图可计算出两方案收取的费用.【详解】(1)第一组有0.2×0.1×100=2人,第二组有1.0×0.1×100=10人.按照分层抽样抽6人时,第一组抽1人,记为A,第二组抽5人,记为B,C,D,E,F.从这6人中抽2人共有15种:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).获赠智能手机的2人月薪都不低于1.75万元的10种:(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).于是获赠智能手机的2人月薪都超过1.75万元的概率P=10(2)(i)这100人月薪收入的样本平均数x和样本方差s2分别是s2(ii)方案一:s=月薪落在区间Ω左侧收活动费用约为(0.02+0.10)×400×50÷10000=0.24(万元);月薪落在区间Ω收活动费用约为(0.24+0.31+0.20)×600×50÷10000=2.25(万元);月薪落在区间Ω右侧收活动费用约为(0.09+0.04)×800×50÷10000=0.52(万元);、因此方案一,这50人共收活动费用约为3.01(万元).方案二:这50人共收活动费用约
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权评估与融资策略的深度解析
- 2025年水位自记仪项目合作计划书
- 企业维修年终个人工作总结
- 幼儿园大班上学期教师班务总结
- 电商平台活动策划与营销执行
- 科学教育的普及与实施策略探讨
- 二零二五年度自由职业者数字营销合作协议
- 现代艺术设计与音乐的审美共鸣
- 2025年度离婚财产分割及知识产权转让协议
- 真题练习:第6单元 科学技术与社会生活(原卷版)
- 定量包装商品培训
- 毛戈平-+毛戈平深度报告:再论毛戈平商业模式与核心壁垒:个人IP+化妆学校+线下服务
- 第二章美容手术的特点及其实施中的基本原则美容外科学概论讲解
- 山东省潍坊市2024-2025学年高三上学期1月期末考试生物试卷含答案
- 2025年“春训”学习心得体会例文(3篇)
- 中央2025年公安部部分直属事业单位招聘84人笔试历年参考题库附带答案详解
- 2025年春新外研版(三起)英语三年级下册课件 Unit4第1课时Startup
- 2025年职业教案编写指南:教师技巧
- 人教版(2025新版)七年级下册数学第七章 相交线与平行线 单元测试卷(含答案)
- 2025-2025学年度第二学期高二物理教学计划
- 前言 马克思主义中国化时代化的历史进程与理论成果
评论
0/150
提交评论