版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
扬州市邗江区重点名校中考五模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1002.下列图形中,可以看作中心对称图形的是()A. B. C. D.3.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a74.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为()A.19° B.29° C.38° D.52°5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A. B. C.4 D.2+6.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④7.半径为的正六边形的边心距和面积分别是()A., B.,C., D.,8.-10-4的结果是()A.-7B.7C.-14D.139.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米 B.(60+160) C.160米 D.360米10.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为()A.3或6 B.1或6 C.1或3 D.4或611.下列说法正确的是()A.2a2b与–2b2a的和为0B.的系数是,次数是4次C.2x2y–3y2–1是3次3项式D.x2y3与–是同类项12.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程x-1=的解为:______.14.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.15.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.16.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.17.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.18.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?20.(6分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,(1)判断△ABC的形状,并证明你的结论;(2)如图1,若BE=CE=,求⊙A的面积;(3)如图2,若tan∠CEF=,求cos∠C的值.21.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.23.(8分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.24.(10分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数
的图象交于点.求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标.25.(10分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.26.(12分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y的最小值(保留一位小数),此时点P在图1中的什么位置.27.(12分)解不等式组:并写出它的所有整数解.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.2、B【解析】
根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.4、C【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.【详解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故选:C.【点睛】本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.5、B【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.6、D【解析】∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选D.7、A【解析】
首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.【详解】解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF是正六边形,半径为,∴∠BOC=,∵OB=OC=R,∴△OBC是等边三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即边心距为;∵,∴S正六边形=,故选:A.【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.8、C【解析】解:-10-4=-1.故选C.9、C【解析】
过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.∴BC=BD+DC=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.10、B【解析】分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.综上所述:h的值为1或1.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.11、C【解析】
根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A、2a2b与-2b2a不是同类项,不能合并,此选项错误;B、πa2b的系数是π,次数是3次,此选项错误;C、2x2y-3y2-1是3次3项式,此选项正确;D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;故选C.【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.12、D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,
解得:x1=0,x2=1,
经检验,x=0不是原方程的解,x=1是原方程的解
故答案为.【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.14、B【解析】
过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B.15、=【解析】
设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:=.故答案是:=.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.16、(,)【解析】
作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.【详解】如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,
∵A(3,),
∴OC=3,AC=,
∵OB=6,
∴BC=OC=3,
则tan∠ABC==,
由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,
∴==,
设O′D=x,BD=3x,
由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
解得:x=或x=−(舍),
则BD=3x=,O′D=x=,
∴OD=OB+BD=6+=,
∴点O′的坐标为(,).【点睛】本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.17、2【解析】
侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.18、1【解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】
(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.20、(1)△ABC为直角三角形,证明见解析;(2)12π;(3).【解析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得,即可求出tan∠C=再求出cos∠C即可.【详解】解:∵,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD为直径,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°△ABC为直角三角形.(2)∵BE=CE∴设∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△内角和可知:3x=90°∴x=30°∴∠ABE=60°∴AB=BE=∴(3)由(1)知:∠D=∠CFE=∠CBE,∴tan∠CBE=,设EF=a,BE=2a,∴BF=,BD=2BF=,∴AD=AB=,∴,DE=2BE=4a,过F作FK∥BD交CE于K,∴,∵,∴∴,∴tan∠C=∴cos∠C=.【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.21、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.22、(1)A(﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);(1)如图,△A1B1C1为所作.23、(1);(2)P在第二象限,Q在第三象限.【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解析】
(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.【详解】(1)∵双曲线过,将代入,解得:.∴所求反比例函数表达式为:.∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.(2)由,可得:,∴.又∵,∴或,∴,或,.【点睛】本题考查了待定系数法求反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021高考生物限时规范特训:第22讲-染色体变异
- 《脊柱整脊方法》课件
- 【1对1】2021年高中数学学业水平考试专题综合检测-模拟试卷(八)
- 2021高考英语一轮课下限时训练及答案(人教新课标必修3Unit-5)
- 安徽省合肥市蜀山区2024-2025学年七年级期末质量检测语文试卷(含答案)
- 2024-2025学年山东省烟台市蓬莱区八年级(上)期末英语试卷(五四学制)(含答案)
- 第二单元 焕发青春活力学情评估(含答案) 2024-2025学年统编版七年级道德与法治下册
- 【全程复习方略】2020年人教A版数学理(广东用)课时作业:第八章-第二节直线的交点坐标与距离公式
- 《儿化发音》课件
- 2021年高考语文考点总动员考向26-点号使用(解析版)
- 腹部外伤门诊病历
- 品质异常处理及要求培训
- 模具部年终总结--ppt课件
- 立式热虹吸再沸器机械设计说明书
- 国家开放大学电大《生产与运作管理》2025-2026期末试题及答案
- 质量保证大纲(共14页)
- 关于欧盟新版EMC标准EN55032的解析
- 木材材积表0.1-10米.xls
- 轻质隔墙板安装合同协议书范本标准版
- 车辆管理各岗位绩效考核量表
- 挺身式跳远单元教学计划
评论
0/150
提交评论