山西省长治市潞州区长治二中2024年高一下数学期末检测试题含解析_第1页
山西省长治市潞州区长治二中2024年高一下数学期末检测试题含解析_第2页
山西省长治市潞州区长治二中2024年高一下数学期末检测试题含解析_第3页
山西省长治市潞州区长治二中2024年高一下数学期末检测试题含解析_第4页
山西省长治市潞州区长治二中2024年高一下数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市潞州区长治二中2024年高一下数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.482.已知分别是的内角的的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形3.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.4.中,,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形5.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.6.已知,则,,的大小顺序为()A. B. C. D.7.函数的一个对称中心是()A. B. C. D.8.等比数列中,,,则公比等于()A.2 B.3 C. D.9.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.10.各棱长均为的三棱锥的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,各项均为正数的数列满足,,若,则的值是.12.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.13.已有无穷等比数列的各项的和为1,则的取值范围为__________.14.已知数列满足且,则____________.15.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.16.计算:__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图(年份代码1-7分别对应年份)(1)建立关于的回归方程(系数精确到0.001);(2)预测2020年我国生活垃圾无害化处理量.附注:参考数据:,,回归方程中斜率和截距的最小二乘估计公式分别为:,.18.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?19.在平面直角坐标系中,已知曲线的方程是(,).(1)当,时,求曲线围成的区域的面积;(2)若直线:与曲线交于轴上方的两点,,且,求点到直线距离的最小值.20.求倾斜角为且分别满足下列条件的直线方程:(1)经过点;(2)在轴上的截距是-5.21.已知函数.(1)若在区间上的最小值为,求的值;(2)若存在实数,使得在区间上单调且值域为,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.2、A【解析】

由已知结合正弦定理可得利用三角形的内角和及诱导公式可得,整理可得从而有结合三角形的性质可求【详解】解:是的一个内角,,由正弦定理可得,又,,即为钝角,故选A.【点睛】本题主要考查了正弦定理,三角形的内角和及诱导公式,两角和的正弦公式,属于基础试题.3、B【解析】

试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题4、C【解析】

由平面向量数量积运算可得,即,得解.【详解】解:在中,,则,即,则为钝角,所以为钝角三角形,故选:C.【点睛】本题考查了平面向量数量积运算,重点考查了向量的夹角,属基础题.5、A【解析】

利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【点睛】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.6、B【解析】

由三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式求得.【详解】故选B.【点睛】本题考查三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式的三角恒等变换,属于基础题.7、A【解析】

令,得:,即函数的对称中心为,再求解即可.【详解】解:令,解得:,即函数的对称中心为,令,即函数的一个对称中心是,故选:A.【点睛】本题考查了正切函数的对称中心,属基础题.8、A【解析】

由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.9、B【解析】

根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.10、C【解析】

判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【详解】由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即,

所以C选项是正确的.【点睛】本题考查棱锥的表面积,考查空间想象能力,计算能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考点:数列的递推公式.12、【解析】

如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.13、【解析】

根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.14、【解析】

由题得为等差数列,得,则可求【详解】由题:为等差数列且首项为2,则,所以.故答案为:2550【点睛】本题考查等差数列的定义,准确计算是关键,是基础题15、【解析】

根据题意,可令,结合,再进行整体代换即可求解【详解】令,则,,,则,,,则函数值域为故答案为:【点睛】本题考查3倍角公式的使用,函数的转化思想,属于中档题16、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)亿吨【解析】

(1)由题意计算平均数与回归系数,写出回归方程,即可求得答案;(2)计算2020年对应的值以及的值,即可求得答案.【详解】(1)由折线图可得:关于的回归方程:.(2)年对应的值为当时,预测年我国生活垃圾无害化处理量为亿吨.【点睛】本题主要考查了求数据的回归直线方程和根据回归直线方程进行预测,解题关键是掌握回归直线的求法,考查了分析能力和计算能力,属于基础题.18、(1)(2)【解析】试题分析:(1)根据若做广告宣传,广告费为n千元比广告费为千元时多卖出件,可得,利用叠加法可求得.(2)根据题意在时,利润,可利用求最值.试题解析:(1)设表示广告费为0元时的销售量,由题意知,由叠加法可得即为所求。(2)设当时,获利为元,由题意知,,欲使最大,则,易知,此时.考点:叠加法求通项,求最值.19、(1)4;(2).【解析】

(1)当,时,曲线的方程是,对绝对值内的数进行讨论,得到四条直线围成一个菱形,并求出面积为4;(2)对进行讨论,化简曲线方程,并与直线方程联立,求出点的坐标,由得到的关系,再利用点到直线的距离公式求出,从而求得.【详解】(1)当,时,曲线的方程是,当时,,当时,,当时,方程等价于,当时,方程等价于,当时,方程等价于,当时,方程等价于,曲线围成的区域为菱形,其面积为;(2)当,时,有,联立直线可得,当,时,有,联立直线可得,由可得,即有,化为,点到直线距离,由题意可得,,,即,可得,,可得当,即时,点到直线距离取得最小值.【点睛】解析几何的思想方法是坐标法,通过代数运算解决几何问题,本题对运算能力的要求是比较高的.20、(1)(2)【解析】

(1)利用倾斜角与斜率的关系与点斜式求解即可.(2)利用点斜式求解即可.【详解】解:(1)∵所求直线的倾斜角为,斜率,又∵经过,故方程为∴即方程为.(2)∵所求直线在轴上的截距是-5,又有斜率,故方程为∴所求方程为【点睛】本题主要考查了直线斜率与倾斜角的关系以及直线方程的点斜式运用.属于基础题.21、(1);(2).【解析】

(1)根据二次函数单调性讨论即可解决.(2)分两种情况讨论,分别讨论单调递增和单调递减的情况即可解决.【详解】(1)若,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论