福建省厦门市双十中学2024届高一下数学期末教学质量检测模拟试题含解析_第1页
福建省厦门市双十中学2024届高一下数学期末教学质量检测模拟试题含解析_第2页
福建省厦门市双十中学2024届高一下数学期末教学质量检测模拟试题含解析_第3页
福建省厦门市双十中学2024届高一下数学期末教学质量检测模拟试题含解析_第4页
福建省厦门市双十中学2024届高一下数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门市双十中学2024届高一下数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列中,已知,则()A.1 B.2 C.3 D.42.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.13.已知函数则的是A. B. C. D.4.如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域,向该正方形中随机撒一粒豆子,它落在阴影区域的概率是,则该阴影区域的面积是()A.3 B. C. D.5.不等式的解集为()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)6.同时掷两枚骰子,所得点数之和为5的概率为()A. B. C. D.7.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.48.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于()A. B. C. D.9.的内角的对边分别为,若,则()A. B. C. D.10.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.在公比为q的正项等比数列{an}中,a3=9,则当3a2+a4取得最小值时,=_____.13.过点作圆的两条切线,切点分别为,则=.14.若关于的不等式有解,则实数的取值范围为________.15.已知等比数列中,若,,则_____.16.一个扇形的圆心角是2弧度,半径是4,则此扇形的面积是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为梯形,,平面平面是的中点.(1)求证:平面;(2)若,证明:18.如图,在三棱柱中,侧棱垂直于底面,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面.19.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.20.已知圆,直线(1)求证:直线过定点;(2)求直线被圆所截得的弦长最短时的值;(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.21.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

已知等差数列中一个独立条件,考虑利用等差中项求解.【详解】因为为等差数列,所以,由,,故选B.【点睛】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.2、B【解析】

将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.3、D【解析】

根据自变量的范围确定表达式,从里往外一步步计算即可求出.【详解】因为,所以,因为,所以==3.【点睛】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.4、B【解析】

利用几何概型的意义进行模拟试验,即估算不规则图形面积的大小.【详解】正方形中随机撒一粒豆子,它落在阴影区域内的概率,,又,.故选:B.【点睛】本题考查几何概型的意义进行模拟试验,计算不规则图形的面积,考查逻辑推理能力和运算求解能力,求解时注意豆子落在阴影区域内的概率与阴影部分面积及正方形面积之间的关系.5、A【解析】

将原不等式化简并因式分解,由此求得不等式的解集.【详解】原不等式等价于,即,解得.故选A.【点睛】本小题主要考查一元二次不等式的解法,属于基础题.6、C【解析】

求出基本事件空间,找到符合条件的基本事件,可求概率.【详解】同时掷两枚骰子,所有可能出现的结果有:共有36种,点数之和为5的基本事件有:共4种;所以所求概率为.故选C.【点睛】本题主要考查古典概率的求解,侧重考查数学建模的核心素养.7、A【解析】

根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.8、C【解析】

设长方体过一个顶点的三条棱长分别为,,,由已知面积求得,,的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求.【详解】设长方体过一个顶点的三条棱长分别为,,,则,解得,,.长方体的对角线长为.则长方体的外接球的半径为,此长方体的外接球的表面积等于.故选:C.【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.9、B【解析】

首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.10、D【解析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用反三角函数运算法则写出结果即可.【详解】解:.故答案为:.【点睛】本题考查反三角函数的运算法则的应用,属于基础题.12、【解析】

利用等比数列的性质,结合基本不等式等号成立的条件,求得公比,由此求得的值.【详解】∵在公比为q的正项等比数列{an}中,a3=9,根据等比数列的性质和基本不等式得,当且仅当,即,即q时,3a2+a4取得最小值,∴log3q=log3.故答案为:【点睛】本小题主要考查等比数列的性质,考查基本不等式的运用,属于基础题.13、【解析】

如图,连接,在直角三角形中,所以,,,故.考点:1.直线与圆的位置关系;2.平面向量的数量积.14、【解析】

利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.15、4【解析】

根据等比数列的等积求解即可.【详解】因为,故.又,故.故答案为:4【点睛】本题主要考查了等比数列等积性的运用,属于基础题.16、16【解析】

利用公式直接计算即可.【详解】扇形的面积.故答案为:.【点睛】本题考查扇形的面积,注意扇形的面积公式有两个:,其中为扇形的半径,为圆心角的弧度数,为扇形的弧长,可根据题设条件合理选择一个,本题属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析【解析】

(1)首先取的中点,连接,.根据已知条件和三角形中位线定理得到,又因为四边形为平行四边形,所以,再利用线面平行的判定即可证明.(2)首先连接,利用线面垂直的判定证明平面,再根据线面垂直的性质即可证明.【详解】(1)取的中点,连接,.因为分别为,的中点,所以.又因为,所以.所以四边形为平行四边形,.又因为平面,所以平面.(2)连接,因为,是的中点,所以.因为平面平面,,所以平面.又因为平面,所以.平面.平面,所以.【点睛】本题第一问考查线面平行的证明,第二问考查利用线面垂直的性质证明线线垂直,属于中档题.18、(1)证明见解析(2)证明见解析【解析】

(1)根据线面垂直的判断定理得到平面;再由面面垂直的判定定理,即可得出结论成立;(2)取的中点,连接,,根据线面平行的判定定理,即可得出结论成立.【详解】(1)在三棱柱中,底面,所以.又因为,所以平面;又平面,所以平面平面;(2)取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以,又因为平面,平面,所以平面.【点睛】本题主要考查证明面面垂直,以及证明线面平行,熟记线面垂直、面面垂直的判定定理,以及线面平行的判定定理即可,属于常考题型.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.

(Ⅱ)由,,能求出数列的前n项和.【详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).20、(1)直线过定点(2).(3)在直线上存在定点,使得为常数.【解析】分析:(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知,r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)由题知,直线MC的方程为,假设存在定点N满足题意,则设P(x,y),,得,且,求出λ,然后求解比值.详解:(Ⅰ)依题意得,令且,得直线过定点(Ⅱ)当时,所截得弦长最短,由题知,,得,由得(Ⅲ)法一:由题知,直线的方程为,假设存在定点满足题意,则设,,得,且整理得,上式对任意恒成立,且解得,说以(舍去,与重合),综上可知,在直线上存在定点,使得为常数点睛:过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y+C2=0交点的直线系,而这交点即为直线系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论