




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市秦汉中学高一数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=02.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.3.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则4.已知,,那么等于()A. B. C. D.5.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.6.已知全集,集合,,则为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}7.设等比数列满足,,则()A.8 B.16 C.24 D.488.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π9.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.10.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.在正项等比数列中,,,则公比________.12.已知数列是等比数列,若,,则公比________.13.等差数列中,,,设为数列的前项和,则_________.14.化简:.15.直线的倾斜角为__________.16.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.18.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.19.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?20.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.21.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。2、D【解析】
先还原几何体,再根据形状求表面积.【详解】由三视图知,该几何体的直观图如图所示,其表面积为,故选.【点睛】本题考查三视图以及几何体表面积,考查空间想象能力以及基本求解能力,属中档题.3、B【解析】
根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.4、B【解析】
首先求出题中,,之间的关系,然后利用正切的和角公式求解即可.【详解】由题知,,所以.故选:B.【点睛】本题考查了正切的和角公式,属于基础题.5、D【解析】
首先根据题意得到,,结合选项即可找到答案.【详解】因为,所以.因为,所以.故选:D【点睛】本题主要考查不等式的性质,属于简单题.6、C【解析】
先根据全集U求出集合A的补集,再求与集合B的并集.【详解】由题得,故选C.【点睛】本题考查集合的运算,属于基础题.7、A【解析】
利用等比数列的通项公式即可求解.【详解】设等比数列的公比为,则,解得所以.故选:A【点睛】本题考查了等比数列的通项公式,需熟记公式,属于基础题.8、C【解析】
先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.9、D【解析】
利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.10、C【解析】
求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【点睛】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等比中项可求出,再由可求出公比.【详解】因为,,所以,,解得.【点睛】本题考查了等比数列的性质,考查了计算能力,属于基础题.12、【解析】
利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.13、【解析】
由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【详解】由等差数列的基本性质可得,因此,.故答案为:.【点睛】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.14、0【解析】原式=+=-sinα+sinα=0.15、【解析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率16、【解析】
以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【点睛】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)存在,为中点.【解析】
(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【点睛】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.18、(1)证明见解析,(2)【解析】
(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【点睛】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立问题的求解;本题解题关键是能够进行合理分类,分别在两种情况下求解参数的范围,最终取交集得到结果.19、;;【解析】
设扇形的半径为,弧长为,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.【详解】设扇形的半径为,弧长为,则,即,扇形的面积,将上式代入得,所以当且仅当时,有最大值,此时,可得,所以当时,扇形的面积取最大值,最大值为【点睛】本题考查了扇形的弧长公式、面积公式以及二次函数的性质,需熟记扇形的弧长、面积公式,属于基础题.20、(1)证明见解析(2)【解析】
(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)当M为半圆弧CD的中点时,四棱锥的体积最大,此时,过点M作MOCD于点E,平面CDM平面ABCDMO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2,AM与CD所成的角即AM与AB所成的角,求得,三角形为正三角形,,故AM与CD所成的角为【点睛】本题主要考查异面直线成的角,面面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.21、(1)(8,62);(2)【解析】
(1)由c-13b=a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 11《葡萄沟》教学设计-2024-2025学年统编版二年级语文上册
- 《自救技能get》主题班会教学设计
- 2024新教材高中地理 第一章 人口与地理环境 第一节 人口分布教学设计 湘教版必修第二册
- 13 猫 教学设计-2024-2025学年语文四年级下册统编版
- 2024-2025学年高中物理 第2章 3 匀变速直线运动的位移与时间的关系教学设计 新人教版必修1
- 13《人物描写一组》 教学设计-2023-2024学年语文五年级下册统编版
- 肥胖患者的气道管理
- Unit 1 My school Part B Read and write Part C Story time(教学设计)-2024-2025学年人教PEP版英语四年级下册
- 2023六年级数学下册 一 欢乐农家游-百分数(二)信息窗2 青岛假日游-百分数实际问题第1课时教学设计 青岛版六三制
- Unit 4 Plants around us 单元整体(教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 日本履历书模板
- 银行账户借用合同协议书范本
- 2022-2023年棉花行业洞察报告PPT
- 《工程质进度-质量管理》培训课件
- 精神科症状学演示课件
- 2.抗美援朝课件(共25张PPT)
- 运动特质自信量表
- 《CSS样式表的使用》教学设计
- 养老护理员考试多选题含答案
- 北师大版小学数学六年级总复习知识点汇总
- 专利权转让合同-电子科技大学计算机学院(20211109173408)
评论
0/150
提交评论