浙江省镇海市镇海中学2024届高一下数学期末质量检测试题含解析_第1页
浙江省镇海市镇海中学2024届高一下数学期末质量检测试题含解析_第2页
浙江省镇海市镇海中学2024届高一下数学期末质量检测试题含解析_第3页
浙江省镇海市镇海中学2024届高一下数学期末质量检测试题含解析_第4页
浙江省镇海市镇海中学2024届高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省镇海市镇海中学2024届高一下数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.2.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π3.一位妈妈记录了孩子6至9岁的身高(单位:cm),所得数据如下表:年龄(岁)6789身高(cm)118126136144由散点图可知,身高与年龄之间的线性回归方程为,预测该孩子10岁时的身高为A.154 B.153 C.152 D.1514.将一个底面半径和高都是的圆柱挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,剩余部分的体积记为,半径为的半球的体积记为,则与的大小关系为()A. B. C. D.不能确定5.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.6.已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B.3 C. D.47.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=128.设为正数,为的等差中项,为的等比中项,则与的大小关为()A. B. C. D.9.设的内角所对边的长分别为,若,则角=()A. B.C. D.10.已知,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.12.已知点是所在平面内的一点,若,则__________.13.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米14.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.15.已知正三棱锥的底面边长为6,所在直线与底面所成角为60°,则该三棱锥的侧面积为_______.16.设,若用含的形式表示,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:518.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=19.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.20.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=21.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【点睛】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.2、C【解析】

先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.3、B【解析】试题分析:根据题意,由表格可知,身高y与年龄x之间的线性回归直线方程为,那么可知回归方程必定过样本中心点,即为(7,131)代入可知,=65,预测该学生10岁时的身高,将x=10代入方程中,即可知为153,故可知答案为B考点:线性回归直线方程点评:主要是考查了线性回归直线方程的回归系数的运用,属于基础题.4、C【解析】

根据题意分别表示出,通过比较。【详解】所以,选C。【点睛】,,。记住这几个公式即可,属于基础题目。5、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.6、C【解析】

由平均数公式求得原有7个数的和,可得新的8个数的平均数,由于新均值和原均值相等,因此由方差公式可得新方差.【详解】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为,方差为,由平均数和方差的计算公式可得,.故选:C.【点睛】本题考查均值与方差的概念,掌握均值与方差的计算公式是解题关键.7、B【解析】

根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.8、B【解析】

由等差中项及等比中项的运算可得,,再结合即可得解.【详解】解:因为为正数,为的等差中项,为的等比中项,则,,又,当且仅当时取等号,又,所以,故选:B.【点睛】本题考查了等差中项及等比中项的运算,重点考查了重要不等式的应用,属基础题.9、B【解析】

试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.10、C【解析】

由,得,则,则.【考点定位】二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于容易题.12、【解析】

设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.13、2000【解析】

由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.14、(-∞,-1)∪(3,+∞)【解析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)15、【解析】

画出图形,过P做底面的垂线,垂足O落在底面正三角形中心,即,因为,即可求出,所以.【详解】作于,因为为正三棱锥,所以,为中点,连结,则,过作⊥平面,则点为正三角形的中心,点在上,所以,,正三角形的边长为6,则,,,斜高,三棱锥的侧面积为:【点睛】此题考查正三棱锥,即底面为正三角形,侧面为等腰三角形的三棱锥,正四面体为四个面都是正三角形,画出图像,属于简单的立体几何题目.16、【解析】

两边取以5为底的对数,可得,化简可得,根据对数运算即可求出结果.【详解】因为所以两边取以5为底的对数,可得,即,所以,,故填.【点睛】本题主要考查了对数的运算法则,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】

(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即可得出结果.【详解】(1)由频率分布直方图可得:,(2)平均分为众数为65分.中位数为(3)数学成绩在的人数为,在的人数为,在的人数为,在的人数为,在的人数为,所以数学成绩在之外的人数为100-5-20-40-25=10.【点睛】本题主要考查样本估计总体,由题中频率分布直方图,结合平均数、中位数等概念,即可求解,属于基础题型.18、(1)cos(α+β)=2【解析】

(1)根据向量数列积的坐标运算,化简整理得到5cos(2)根据题中条件求出cosα=310再由cos(2α+β)=【详解】解:(1)因为a=(所以a⋅=5因为a⋅b=2,所以5(2)因为0<α<π2,因为0<α<β<π2,所以因为cos(α+β)=2所以cos因为0<α<β<π2,所以0<2α+β<【点睛】本题主要考查三角恒等变换,熟记两角和的余弦公式即可,属于常考题型.19、(Ⅰ);(Ⅱ).【解析】

(I)将化简整理成的形式,利用公式可求最小正周期;(II)根据,可求的范围,结合函数图象的性质,可得参数的取值范围.【详解】(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.20、(1)-4(2)g(t)=t2【解析】

(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.21、(Ⅰ)详见解析;(Ⅱ)4.【解析】试题分析:(1)在三角形中处理边角关系时,一般全部

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论