2024届四川省成都市双流区数学高一下期末考试试题含解析_第1页
2024届四川省成都市双流区数学高一下期末考试试题含解析_第2页
2024届四川省成都市双流区数学高一下期末考试试题含解析_第3页
2024届四川省成都市双流区数学高一下期末考试试题含解析_第4页
2024届四川省成都市双流区数学高一下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市双流区数学高一下期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知分别为内角的对边,若,b=则=()A. B. C. D.2.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.3.等比数列的前n项和为,若,则等于()A.-3 B.5 C.33 D.-314.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.5.设,是两个不同的平面,a,b是两条不同的直线,给出下列四个命题,正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则6.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.7.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.8.直线的倾斜角为()A. B. C. D.9.函数的图象可能是().A. B. C. D.10.已知函数,则下列命题正确的是()①的最大值为2;②的图象关于对称;③在区间上单调递增;④若实数m使得方程在上恰好有三个实数解,,,则;A.①② B.①②③ C.①③④ D.①②③④二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,,且,则______.12.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.13.已知向量,则________14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.16.若满足约束条件,的最小值为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的值域为A,.(1)当的为偶函数时,求的值;(2)当时,在A上是单调递增函数,求的取值范围;(3)当时,(其中),若,且函数的图象关于点对称,在处取得最小值,试探讨应该满足的条件.18.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.19.已知函数,作如下变换:.(1)分别求出函数的对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.20.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,若数列的前项和为,求证:.21.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由已知利用正弦定理可求的值,根据余弦定理可得,解方程可得的值.【详解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,负值舍去.故选.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了方程思想,属于基础题.2、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.3、C【解析】

由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出.【详解】设等比数列的公比为(公比显然不为1),则,得,因此,,故选C.【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.4、A【解析】

根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.5、C【解析】

利用线面、面面之间的位置关系逐一判断即可.【详解】对于A,若,,则平行、相交、异面均有可能,故A不正确;对于B,若,,,则垂直、平行均有可能,故B不正确;对于C,若,,,根据线面垂直的定义可知内的两条相交线线与内的两条相交线平行,故,故C正确;对于D,由C可知,D不正确;故选:C【点睛】本题考查了由线面平行、线面垂直判断线面、线线、面面之间的位置关系,属于基础题.6、A【解析】

代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.7、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.8、D【解析】

求出斜率,根据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.9、D【解析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.10、C【解析】

,由此判断①的正误,根据判断②的正误,由求出的单调递增区间,即可判断③的正误,结合的图象判断④的正误.【详解】因为,故①正确因为,故②不正确由得所以在区间上单调递增,故③正确若实数m使得方程在上恰好有三个实数解,结合的图象知,必有此时,另一解为即,,满足,故④正确综上可知:命题正确的是①③④故选:C【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据即可得出,进行数量积的坐标运算即可求出x.【详解】∵;∴;∴x=﹣1;故答案为﹣1.【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.12、【解析】

求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【点睛】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.13、2【解析】

由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.14、1.98.【解析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.15、【解析】

根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【点睛】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.16、4【解析】

由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【点睛】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)由函数为偶函数,可得,故,由此可得的值.(2)化简函数,求出,化简,由题意可知:,由此可得的取值范围.(3)由条件得,再由,,可得.由的图象关于点,对称求得,可得.再由的图象关于直线成轴对称,所以,可得,,由此求得满足的条件.【详解】解:(1)因为函数为偶函数,所以,得对恒成立,即,所以.(2),即,,由题意可知:得,∴.(3)又∵,,,不妨设,,则,其中,由函数的图像关于点对称,在处取得最小值得,即,故.【点睛】本题主要考查三角函数的奇偶性,单调性和对称性的综合应用,属于中档题.18、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19、(1),;(2),,.【解析】

(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函数的对称中心,单调区间,函数变换,周期,值域,综合性强,意在考查学生对于三角函数公式和性质的灵活运用.20、(1)(2)见解析【解析】

(1)先利用时,由求出的值,再令,由,得出,将两式相减得出数列为等比数列,得出该数列的公比,可求出;(2)利用对数的运算性质以及等差数列的求和公式得出,并将裂项为,利用裂项法求出,于此可证明出所证不等式成立.【详解】(1)由题可得.当时,,即.由题设,,两式相减得.所以是以2为首项,2为公比的等比数列,故.(2),则,所以因为,所以,即证.【点睛】本题考查利用求通项,以及裂项法求和,利用求通项的原则是,另外在利用裂项法求和时要注意裂项法求和法所适用数列通项的基本类型,熟悉裂项法求和的基本步骤,都是常考题型,属于中等题.21、(1)选择C;(2)第4或第5年.【解析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论