




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省唐山遵化市数学高一下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则在上的单调递增区间是()A. B. C. D.2.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.3.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.304.设A,B是任意事件,下列哪一个关系式正确的()A.A+B=A B.ABA C.A+AB=A D.A5.设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)6.已知是两条异面直线,,那么与的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直7.平面向量与共线且方向相同,则的值为()A. B. C. D.8.设函数是定义为R的偶函数,且对任意的,都有且当时,,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是()A. B. C. D.9.在中,内角A,B,C所对的边分别为a,b,c,若,,则一定是()A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形10.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.28二、填空题:本大题共6小题,每小题5分,共30分。11.如图是一个算法流程图.若输出的值为4,则输入的值为______________.12.方程组对应的增广矩阵为__________.13.设,则等于________.14.经过两圆和的交点的直线方程为______.15.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.16.若点到直线的距离是,则实数=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.18.已知函数.(1)求的值及f(x)的对称轴;(2)将的图象向左平移个单位得到函数的图象,求的单调递增区间.19.某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表分组频数频率10205020合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.21.已知圆,为坐标原点,动点在圆外,过点作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足的点的轨迹方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【点睛】本题考查正弦型函数的单调区间,属于基础题2、B【解析】试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB为直径的半圆内的概率是,故选B.考点:几何概型.3、B【解析】
由分层抽样方法即按比例抽样,运算即可得解.【详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【点睛】本题考查了分层抽样方法,属基础题.4、C【解析】
试题分析:因为题目中给定了A,B是任意事件,那么利用集合的并集思想来分析,两个事件的和事件不一定等于其中的事件A.可能大于事件A选项B,AB表示的为AB的积事件,那么利用集合的思想,和交集类似,不一定包含A事件.选项C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.选项D中,利用补集的思想和交集的概念可知,表示的事件A不发生了,同时事件B发生,显然D不成立.考点:本试题考查了事件的关系.点评:对于事件之间的关系的理解,可以运用集合中的交集,并集和补集的思想分别对应到事件中的和事件,积事件,非事件上来分析得到,属于基础题.【详解】请在此输入详解!5、C【解析】
根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案.【详解】根据题意,设x>0,则-x<0,所以f(-x)=-x因为f(x)是定义在R上的奇函数,所以f(-x)=-x所以f(x)=x即x≥0时,当x<0时,f(x)=-x则f(x)的图象如图:在区间(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3时,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.6、C【解析】
由平行公理,若,因为,所以,与、是两条异面直线矛盾,异面和相交均有可能.【详解】、是两条异面直线,,那么与异面和相交均有可能,但不会平行.因为若,因为,由平行公理得,与、是两条异面直线矛盾.故选C.【点睛】本题主要考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力,属于基础题.7、C【解析】
利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选.【点睛】本题考查向量共线的坐标运算,是基础的计算题.8、D【解析】∵对于任意的x∈R,都有f(x−2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[−2,0]时,f(x)=−1,且函数f(x)是定义在R上的偶函数,若在区间(−2,6]内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(−2,6]上有三个不同的交点,如下图所示:又f(−2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即<3,且>3,由此解得:<a<2,故答案为(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解9、D【解析】
利用余弦定理、等边三角形的判定方法即可得出.【详解】由余弦定理得,则,即,所以.∵∴是等边三角形.故选D.【点睛】本题考查了余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,熟练掌握余弦定理是解答本题的关键.10、C【解析】
可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】
对的范围分类,利用流程图列方程即可得解.【详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.12、【解析】
根据增广矩阵的概念求解即可.【详解】方程组对应的增广矩阵为,故答案为:.【点睛】本题考查增广矩阵的概念,是基础题.13、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.14、【解析】
利用圆系方程,求解即可.【详解】设两圆和的交点分别为,则线段是两个圆的公共弦.令,,两式相减,得,即,故线段所在直线的方程为.【点睛】本题考查圆系方程的应用,考查计算能力.15、④【解析】
利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题16、或1【解析】
由点到直线的距离公式进行解答,即可求出实数a的值.【详解】点(1,a)到直线x﹣y+1=0的距离是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴实数a的值为﹣1或1.故答案为:﹣1或1.【点睛】本题考查了点到直线的距离公式的应用问题,解题时应熟记点到直线的距离公式,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)真命题,证明见解析;(3).【解析】
(1)根据题意直接写出、、的值,可得出结果;(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.【详解】(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,因此,,,;(2)真命题,证明如下:①当时,则,,,此时,当时,;②当时,设,则,,,此时,当时,.综上所述,命题为真命题;(3)先证明:“”是“存在,当时,恒有成立”的充要条件.假设存在,使得“存在,当时,恒有成立”.则数列的前项为,,,,,,后面的项顺次为,,,,故对任意的,,对任意的,取,其中表示不超过的最大整数,则,令,则,此时,有,这与矛盾,故若存在,当时,恒有成立,必有;从而得证.另外:当时,数列为,故,则.【点睛】本题考查数列知识的应用,涉及到命题真假的判断,同时也考查了数列新定义问题,解题时要充分从题中数列的定义出发,充分利用分类讨论思想,综合性强,属于难题.18、(1),;(2)。【解析】
(1)求得函数,代入即可求解的值,令,即可求得函数的对称轴的方程;(2)由(1),结合三角函数的图象变换,求得,再根据三角函数的性质,即可求解.【详解】(1)由函数,则,令,解得,即函数的对称轴的方程为(2)由(1)可知函数的图象向左平移个单位得到函数的图象,可得的图象,令,解得,所以函数的单调递增区间为.【点睛】本题主要考查了三函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换求得函数的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)见解析;(2)40.00(mm)【解析】解:(1)频率分布表如下:分组
频数
频率
[39.95,39.97)
10
0.10
5
[39.97,39.99)
20
0.20
10
[39.99,40.01)
50
0.50
25
[40.01,40.03]
20
0.20
10
合计
100
1
注:频率分布表可不要最后一列,这里列出,只是为画频率分布直方图方便.频率分布直方图如下:(2)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).20、(1)见解析;(2)【解析】
(1)不等式可化为:,比较与的大小,进而求出解集.(2)恒成立即恒成立,则,进而求得答案.【详解】解:(1)不等式可化为:,①当时,不等无解;②当时,不等式的解集为;③当时,不等式的解集为.(2)由可化为:,必有:,化为,解得:.【点睛】本题考查含参不等式的解法以及恒成立问题,属于一般题.21、(1)或;(2).【解析】
解:把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径r=2.(1)当l的斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小草教育资源网
- 2025年春国开电大《形势与政策》形考任务专题测试1-5及大作业
- 思想工作总结范例
- 律师执业情况总结
- 2025新款民间借贷抵押借款合同范本
- 阳光棚制作合同范本
- 大量移动脚手架租赁合同
- 小学生爱国教育
- 梅毒防控培训课件
- 买房公寓合同标准文本
- 2024年度中国共产主义共青团团课课件版
- 《珠宝玉石鉴定仪器》课件
- 2025年上海市各区高三语文一模试题汇编之文言文二阅读(含答案)
- 食品安全教育课件教学
- 人不安全行为物的不安全状态考核试卷
- 《经济国际化》课件
- 医学综合英语学习通超星期末考试答案章节答案2024年
- DB41T 743-2012 温拌沥青混合料施工技术规范
- 工程化学试题集及答案
- 护理查房(抑郁发作)
- 2024年资格考试-对外汉语教师资格证考试近5年真题附答案
评论
0/150
提交评论