2024届浙江省温州市新力量联盟高一数学第二学期期末质量检测模拟试题含解析_第1页
2024届浙江省温州市新力量联盟高一数学第二学期期末质量检测模拟试题含解析_第2页
2024届浙江省温州市新力量联盟高一数学第二学期期末质量检测模拟试题含解析_第3页
2024届浙江省温州市新力量联盟高一数学第二学期期末质量检测模拟试题含解析_第4页
2024届浙江省温州市新力量联盟高一数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省温州市新力量联盟高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式成立的是()A. B.C. D.2.已知直线l1:ax+2y+8=0与l2:x+(a-1)y+a2-1=0平行,则实数a的取值是()A.-1或2 B.-1 C.0或1 D.23.圆的圆心坐标和半径分别是()A.,2 B.,1 C.,2 D.,14.如直线与平行但不重合,则的值为().A.或2 B.2 C. D.5.一实体店主对某种产品的日销售量(单位:件)进行为期n天的数据统计,得到如下统计图,则下列说法错误的是()A. B.中位数为17C.众数为17 D.日销售量不低于18的频率为0.56.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.47.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π48.若点(m,n)在反比例函数y=的图象上,其中m<0,则m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣29.下列函数中,在区间上是减函数的是()A. B. C. D.10.设,则()A.3 B.2 C.1 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______12.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.13.已知均为正数,则的最大值为______________.14.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)15.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.16.在中,角所对的边分别为,若,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从半径为1的半圆出发,以此向内、向外连续作半圆,且后一个半圆的直径为前一个半圆的半径,如此下去,可得到无数个半圆.(1)求出所有这些半圆围城的封闭图形的周长;(2)求出所有这些半圆围城的封闭图形的面积.18.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.19.已知.(1)求与的夹角;(2)求.20.已知函数.(1)求的单调增区间;(2)求的图像的对称中心与对称轴.21.已知函数.(I)比较,的大小.(II)求函数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.2、A【解析】

【详解】,选A.【点睛】本题考查由两直线平行求参数.3、B【解析】

将圆的一般方程配成标准方程,由此求得圆心和半径.【详解】由,得,所以圆心为,半径为.【点睛】本小题主要考查圆的一般方程化为标准方程,考查圆心和半径的求法,属于基础题.4、C【解析】

两直线斜率相等,且截距不相等。【详解】解析:由题意得,,解得或2,经检验时两直线重合,故.故选C.【点睛】本题考查两直线平行,属于基础题.5、B【解析】

由统计图,可计算出总数、中位数、众数,算得销量不低于18件的天数,即可求得频率.【详解】由统计图可知,总数,所以A正确;从统计图可以看出,从小到大排列时,中间两天的销售量的平均值为,所以B错误;从统计图可以看出,销量最高的为17件,所以C正确;从统计图可知,销量不低于18的天数为,所以频率为,所以D正确.综上可知,错误的为B故选:B【点睛】本题考查了统计中的总数、中位数、众数和频率的相关概念和性质,属于基础题.6、B【解析】

判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.7、D【解析】

由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.8、C【解析】

根据题意可得出,再根据可得,将添上两个负号运用基本不等式,即可求解.【详解】由题意,可得,因为,所以,所以,当且仅当,即时,等号成立,故选:C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】

根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.

在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.10、B【解析】

先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.12、【解析】

先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.13、【解析】

根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【点睛】本题考查了重要不等式,把变形为是解题的关键.14、72【解析】

先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.15、【解析】

根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【点睛】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.16、【解析】根据正弦定理得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由第n个半圆的周长得,再利用无穷等比数列求和即可(2)由第n个半圆的面积得,再利用无穷等比数列求和即可【详解】(1)由题意知,圆的半径满足数列,设第n个半圆的周长为,所以,则所有这些半圆围成的封闭图形的周长.(2)题意知,设第n个半圆的面积为,则,所以所有这些半圆围成的封闭图形的面积将为.【点睛】本题考查无穷等比数列的和,注意圆的半径为等比数列,是周长及面积的考查,是基础题18、(1),(2),,(3)【解析】

(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.19、(1);(2).【解析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【详解】(1)因为,所以,因为,因为,所以.(2).【点睛】本题考查数量积的运算及其变形运用,特别注意之间关系的运用与转化,考查基本运算能力.20、(1);(2)对称中心,;对称轴为【解析】

利用诱导公式可将函数化为;(1)令,求得的范围即为所求单调增区间;(2)令,求得即为对称中心横坐标,进而得到对称中心;令,求得即为对称轴.【详解】(1)令,,解得:,的单调递增区间为(2)令,,解得:,的对称中心为,令,,解得:,的对称轴为【点睛】本题考查正弦型函数单调区间、对称轴和对称中心的求解,涉及到诱导公式化简函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论