




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页第4章《数列》同步单元必刷卷(培优卷)一、单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.在数列中,,,则()A.数列单调递减 B.数列单调递增C.数列先递减后递增 D.数列先递增后递减【答案】A【分析】由数列递推式求出,可判断,将两边平方得,判断与同号,结合,可判断,即得答案.【详解】由,,得,,且可知.再由,两边平方得①,则②,②﹣①得:,∴,∵,∴与同号,由,可知,,即,可知数列单调递减.故选:A.2.已知数列满足:,,.若,则(
)A.1 B.2 C.3 D.2022【答案】A【分析】令,则,再根据等差数列的定义即可得到,即可求出答案.【详解】令,则故,为常数,故数列是等差数列故选:A.3.若为等差数列,是其前项的和,且为等比数列,,则的值为(
)A. B. C. D.【答案】D【分析】根据等差数列以及等比数列的性质分别求得的值,结合三角函数诱导公式化简求值,即得答案.【详解】因为为等差数列,故,所以,又因为为等比数列,,所以,当时,;当时,;所以,故选:D.4.记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(
)A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,【详解】方法1,甲:为等差数列,设其首项为,公差为,则,因此为等差数列,则甲是乙的充分条件;反之,乙:为等差数列,即为常数,设为,即,则,有,两式相减得:,即,对也成立,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C正确.方法2,甲:为等差数列,设数列的首项,公差为,即,则,因此为等差数列,即甲是乙的充分条件;反之,乙:为等差数列,即,即,,当时,上两式相减得:,当时,上式成立,于是,又为常数,因此为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C5.在等比数列中,已知,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【分析】直接利用等比数列的通项公式及其充分条件,必要条件的定义求解即可.【详解】∵公比,∴,∴,∴,∴,∴,∴,∴,又∵,∴,∴,∴,∴且,∴且,即“”是“”的充分不必要条件.故选:A.6.我们学习了数学归纳法的相关知识,知道数学归纳法可以用来证明与正整数n相关的命题.下列三个证明方法中,可以证明某个命题对一切正整数n都成立的是(
)①成立,且对任意正整数k,“当时,均成立”可以推出“成立”②,均成立,且对任意正整数k,“成立”可以推出“成立”③成立,且对任意正整数,“成立”可以推出“成立且成立”A.②③ B.①③ C.①② D.①②③【答案】D【分析】根据数学归纳法的定义逐一分析即可得出答案.【详解】解:对于①,对任意正整数k,“当时,均成立,则当时,成立,故①可证明某个命题对一切正整数n都成立;对于②,因为,均成立,成立,则当为奇数时,成立,当为偶数数时,成立,所以②可以证明某个命题对一切正整数n都成立;对于③,因为成立,对任意正整数,成立,所以也成立,又成立,成立,则也成立,所以③可以证明某个命题对一切正整数n都成立.故选:D.7.记为等比数列的前n项和,若,,则(
).A.120 B.85 C. D.【答案】C【分析】方法一:根据等比数列的前n项和公式求出公比,再根据的关系即可解出;方法二:根据等比数列的前n项和的性质求解.【详解】方法一:设等比数列的公比为,首项为,若,则,与题意不符,所以;若,则,与题意不符,所以;由,可得,,①,由①可得,,解得:,所以.故选:C.方法二:设等比数列的公比为,因为,,所以,否则,从而,成等比数列,所以有,,解得:或,当时,,即为,易知,,即;当时,,与矛盾,舍去.故选:C.【点睛】本题主要考查等比数列的前n项和公式的应用,以及整体思想的应用,解题关键是把握的关系,从而减少相关量的求解,简化运算.8.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为(
)A. B. C. D.【答案】C【分析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.多项选择题:本题共4小题,每小题满分5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得2分,有选错的得0分.9.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第层有个球,从上往下层球的总数为,则(
)A. B.C., D.【答案】ACD【分析】根据,,的值,可得,利用累加法可得,再计算前项的和可判断A;由递推关系可判断B;由可判断C;利用裂项求和可判断D,进而可得正确选项.【详解】因为,,,……,,以上个式子累加可得:,所以,故选项A正确;由递推关系可知:,故选项B不正确;当,,故选项C正确;因为,所以,故选项D正确;故选:ACD.10.设f(x)是定义在正整数集上的函数,且f(x)满足:当成立时,总有成立.则下列命题总成立的是(
)A.若成立,则成立B.若成立,则当时,均有成立C.若成立,则成立D.若成立,则当时,均有成立【答案】AD【分析】由逆否命题与原命题为等价命题可判断AC,再根据题意可得若成立,则当时,均有成立,据此可对B作出判断;同理判断出D的正误.【详解】对于A:当成立时,总有成立.则逆否命题:当成立时,总有成立.若成立,则成立,故A正确;对于B:若成立,则当时,均有成立,故B错误;对于C:当成立时,总有成立.则逆否命题:当成立时,总有成立.故若成立,则成立,所以C错误;对于D:根据题意,若成立,则成立,即成立,结合,所以当时,均有成立,故D正确.故选:AD11.已知数列为等比数列,首项,公比,则下列叙述正确的是(
)A.数列的最大项为 B.数列的最小项为C.数列为递增数列 D.数列为递增数列【答案】ABC【分析】分别在为偶数和为奇数的情况下,根据项的正负和的正负得到最大项和最小项,知AB正误;利用和可知CD正误.【详解】对于A,由题意知:当为偶数时,;当为奇数时,,,最大;综上所述:数列的最大项为,A正确;对于B,当为偶数时,,,最小;当为奇数时,;综上所述:数列的最小项为,B正确;对于C,,,,,,,数列为递增数列,C正确;对于D,,,;,,,又,,数列为递减数列,D错误.故选:ABC.12.在数列中,对于任意的都有,且,则下列结论正确的是(
)A.对于任意的,都有B.对于任意的,数列不可能为常数列C.若,则数列为递增数列D.若,则当时,【答案】ACD【分析】A由递推式有上,结合恒成立,即可判断:B反证法:假设为常数列,根据递推式求判断是否符合,即可判断;C、D由上,讨论、研究数列单调性,即可判断.【详解】A:由,对有,则,即任意都有,正确;B:由,若为常数列且,则满足,错误;C:由且,当时,此时且,数列递增;当时,此时,数列递减;所以时数列为递增数列,正确;D:由C分析知:时且数列递减,即时,正确.故选:ACD填空题:本题共4小题,每小题5分,共20分。13.设为数列的前项和,已知,,则【答案】【分析】两边同除,令,则有且,则有,即可得;【详解】,令,则,∴又,,∴;故答案为:;14.利用数学归纳法证明“”时,由到时,左边应添加因式.【答案】【分析】分别求出和时左边的式子,比较两个表达式前后的区别即可.【详解】当时,左边,当时,左边,所以左边应添加因式为.故答案为:.15.写出一个同时满足下列条件①②的等比数列的通项公式.①;②【答案】(答案不唯一)【分析】可构造等比数列,设公比为,由条件,可知公比为负数且,再取符合的值即可得解.【详解】可构造等比数列,设公比为,由,可知公比为负数,因为,所以,所以可取设,则.故答案为:.16.已知的前项和为,,,则.【答案】【分析】根据题意令和,代入整理可得,利用并项求和结合等差数列求和运算求解.【详解】当时,则为偶数,为偶数,可得,,两式相加可得:,故,解得.故答案为:.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.记,为数列的前n项和,已知,.(1)求,并证明是等差数列;(2)求.【答案】(1),证明见解析(2)【分析】(1)利用与前n项和的关系,由可得的值,即可求得的值;根据相减法求得为常数,证明其为等差数列;(2)由(1)中数列为等差数列,对进行奇偶讨论,即可求得.【详解】(1)解:已知,当时,,;当时,,,所以.因为①,所以②.②-①得,,整理得,,所以(常数),,所以是首项为6,公差为4的等差数列.(2)解:由(1)知,,,.当n为偶数时,;当n为奇数时,.综上所述,.18.设,,…,均为非负实数,证明:若,则均有.【答案】证明见解析【分析】根据数学归纳法步骤证明即可.【详解】下面用数学归纳法证明.①当时,左边,成立.②假设当时,原命题成立,即对任意的非负实数,,…,,只要满足,就有.③当时,若,把看作一个整体,则有.由②可知,故,即结论对也成立.综上可得原命题成立.19.已知数列的前项和为,且(1)求,并证明数列是等差数列:(2)若,求正整数的所有取值.【答案】(1),证明见解析(2)【分析】(1)根据证明为定值即可;(2)先根据(1)求出,再利用错位相减法求出,从而可得,再根据函数的单调性即可得解.【详解】(1)由,得,当时,,所以,当时,,两式相减得,即,所以,所以数列是以为首项,为公差的等差数列;(2)由(1)得,所以,,,两式相减得,所以,则,由,得,即,令,因为函数在上都是增函数,所以函数在上是增函数,由,,则当时,,所以若,正整数的所有取值为.20.已知为等差数列,,记,分别为数列,的前n项和,,.(1)求的通项公式;(2)证明:当时,.【答案】(1);(2)证明见解析.【分析】(1)设等差数列的公差为,用表示及,即可求解作答.(2)方法1,利用(1)的结论求出,,再分奇偶结合分组求和法求出,并与作差比较作答;方法2,利用(1)的结论求出,,再分奇偶借助等差数列前n项和公式求出,并与作差比较作答.【详解】(1)设等差数列的公差为,而,则,于是,解得,,所以数列的通项公式是.(2)方法1:由(1)知,,,当为偶数时,,,当时,,因此,当为奇数时,,当时,,因此,所以当时,.方法2:由(1)知,,,当为偶数时,,当时,,因此,当为奇数时,若,则,显然满足上式,因此当为奇数时,,当时,,因此,所以当时,.21.记数列{an}的前n项和为Sn,对任意正整数n,有2Sn=nan,且a2=3.(1)求数列{an}的通项公式;(2)对所有正整数m,若ak<2m<ak+1,则在ak和ak+1两项中插入2m,由此得到一个新数列{bn},求{bn}的前40项和.【答案】(1)(2)1809【分析】(1)由得出数列的递推关系,然后由连乘法求得通项;(2)考虑到,,从而确定的前40项中有34项来自,其他6项由组成,由此分组求和.【详解】(1)由,则,两式相减得:,整理得:,即时,,所以时,,又时,,得,也满足上式.故.(2)由.所以,又,所以前40项中有34项来自.故.22.已知数列满足,其前8项的和为64;数列是公比大于0的等比数列,,.(1)求数列和的通项公式;(2)记,,求数列的前项和;(3)记,求.【答案】(1),(2)(3)【分析】(1)根据条件得到等差数列的公差,利用前项和公式,求出首项,得到通项公式,设出公比,得到方程,求出公比,写成通项公式;(2)写出的通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创业文化培育与经济增长-全面剖析
- 单板加工行业的供应链优化-全面剖析
- 国产玩具品牌竞争力分析-全面剖析
- 内存管理在平衡归并排序中的应用-全面剖析
- 智能温控酷壳技术-全面剖析
- 基因表达调控网络重构-全面剖析
- 大数据在优化在线图书销售策略中的应用-全面剖析
- 班组三级安全培训试题及参考答案(预热题)
- 在线学习平台课程衔接计划
- IT培训机构劳动合同示例
- 2025年精密注塑市场分析报告
- 肝衰竭诊治指南(2024年版)解读
- 肺功能培训课件
- 《焊接工艺与技能训练》课程标准
- 老旧小区改造施工方案及技术措施-2
- DB11-T 1834-2021城市道路工程施工技术规程
- 配电网工程典型问题及解析(第三部分)课件(PPT 49页)
- 彩钢棚专项施工措施方案
- DB11_T1945-2021 屋面防水技术标准(高清最新版)
- 2022《渔业行政处罚规定(2022修正)》全文学习材料PPT课件(带内容)
- lonely planet 孤独星球 云南中文版 电子档
评论
0/150
提交评论