版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省会理县第一中学高一数学第二学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从某健康体检中心抽取了8名成人的身高数据(单位:厘米),数据分别为172,170,172,166,168,168,172,175,则这组数据的中位数和众数分别是()A.171172 B.170172 C.168172 D.1701752.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.3.读下面的程序框图,若输入的值为-5,则输出的结果是()A.-1 B.0 C.1 D.24.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.85.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)6.当为第二象限角时,的值是().A. B. C. D.7.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.18.若向量,,则()A. B. C. D.9.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.1510.一个四面体的三视图如图所示,则该四面体的表面积是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域是________12.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.13.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________14.在等比数列中,,公比,若,则的值为.15.函数,的值域是________.16.函数的反函数为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角终边上一点,且,求的值.18.已知圆:.(Ⅰ)求过点的圆的切线方程;(Ⅱ)设圆与轴相交于,两点,点为圆上异于,的任意一点,直线,分别与直线交于,两点.(ⅰ)当点的坐标为时,求以为直径的圆的圆心坐标及半径;(ⅱ)当点在圆上运动时,以为直径的圆被轴截得的弦长是否为定值?请说明理由.19.已知.(I)若函数有三个零点,求实数的值;(II)若对任意,均有恒成立,求实数的取值范围.20.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.21.如图,在多面体中,为等边三角形,,点为边的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的正弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由中位数和众数的定义,即可得到本题答案.【详解】把这组数据从小到大排列为166,168,168,170,172,172,172,175,则中位数为,众数为172.故选:A【点睛】本题主要考查中位数和众数的求法.2、A【解析】
可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【点睛】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题3、A【解析】
直接模拟程序框图运行,即可得出结论.【详解】模拟程序框图的运行过程如下:输入,进入判断结构,则,,输出,故选:A.【点睛】本题主要考查程序框图,一般求输出结果时,常模拟程序运行,列表求解.4、A【解析】
先求出A∩B的交集,再依据求真子集个数公式求出,也可列举求出。【详解】A=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的个数为2【点睛】有限集合a1,a2,⋯5、C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.6、C【解析】
根据为第二象限角,,,去掉绝对值,即可求解.【详解】因为为第二象限角,∴,,∴,故选C.【点睛】本题重点考查三角函数值的符合,三角函数在各个象限内的符号可以结合口诀:一全正,二正弦,三正切,四余弦,增加记忆印象,属于基础题7、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、B【解析】
根据向量的坐标运算,先由,求得,再求的坐标.【详解】因为,所以,所以.故选:B【点睛】本题主要考查了向量的坐标运算,还考查了运算求解的能力,属于基础题.9、B【解析】
已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【点睛】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.10、B【解析】
试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面平面,,且,,所以,与均为正三角形,且边长为,所以,故该三棱锥的表面各为,故选B.考点:1.三视图;2.多面体的表面积与体积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用函数的单调性,结合函数的定义域求解即可.【详解】因为函数的定义域是,,函数是增函数,所以函数的最小值为:,最大值为:.所以函数的值域为:,.故答案为,.【点睛】本题考查函数的单调性以及函数的值域的求法,考查计算能力.12、【解析】
先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.13、2019【解析】
根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.14、1【解析】
因为,,故答案为1.考点:等比数列的通项公式.15、【解析】
利用正切函数在单调递增,求得的值域为.【详解】因为函数在单调递增,所以,,故函数的值域为.【点睛】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.16、【解析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】
根据三角函数定义列方程解得,再根据三角函数定义求的值.【详解】,(1)当时,.(2)当时,,解得.当时,;当时,.综上当时,;当时,;当时,.【点睛】本题考查三角函数定义,考查基本分析求解能力,属基础题.18、(Ⅰ)或;(Ⅱ)(ⅰ)圆心为,半径;(ⅱ)见解析【解析】
(Ⅰ)先判断在圆外,所以圆过点的切线有两条.再由斜率是否存在分别讨论.(Ⅱ)(ⅰ)设直线PA和PB把其与直线交于,两点表示出来,写出圆的方程化简即可.(ⅱ)先求出以为直径的圆被轴截得的弦长,在设出PA和PB的直线方程,分别求出与直线的交点,求出圆心,再根据勾股定理易求解.【详解】(Ⅰ)因为点在圆外,所以圆过点的切线有两条.当直线的斜率不存在时,直线方程为,满足条件.当直线的斜率存在时,可设为,即.由圆心到切线的距离,解得.此时切线方程为.综上,圆的切线方程为或.(Ⅱ)因为圆与轴相交于,两点,所以,.(ⅰ)当点坐标为时,直线的斜率为,直线的方程为.直线与直线的交点坐标为,同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以以为直径的圆的圆心为,半径.(ⅱ)以为直径的圆被轴截得的弦长为定值.设点,则.直线的斜率为,直线的方程为.直线与直线的交点坐标为.同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以圆的圆心,半径为.方法一:圆被轴截得的弦长为.所以以为直径的圆被轴截得的弦长为定值.方法二:圆的方程为.令,解得.所以.所以圆与轴的交点坐标分别为,.所以以为直径的圆被轴截得的弦长为定值.【点睛】此题考查解析几何中关于圆的题目,一般做法是设而不求,将需要的信息表示出来再化简求值,属于一般性题目.19、(I)或;(II).【解析】
(I)令,将有三个零点问题,转化为有三个不同的解的解决.画出和的图像,结合图像以及二次函数的判别式分类讨论,由此求得的值.(II)令,将恒成立不等式等价转化为恒成立,通过对分类讨论,求得的最大值,由此求得的取值范围.【详解】(I)由题意等价于有三个不同的解由,可得其函数图象如图所示:联立方程:,由可得结合图象可知.同理,由可得,因为,结合图象可知,综上可得:或.(Ⅱ)设,原不就价于,两边同乘得:,设,原题等价于的最大值.(1)当时,,易得,(2),,易得,所以的最大值为16,即,故.【点睛】本小题主要考查根据函数零点个数求参数,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想,属于难题.20、(1)(2)(3)或【解析】
(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【点睛】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.21、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).【解析】
(I)取中点,连结,利用三角形中位线定理可证明是平行四边形,可得,由线面平行的判定定理可得结果;(Ⅱ)先证明,,可得平面,从而可得平面,由面面垂直的判定定理可得结果;(Ⅲ)取中点,连结,直线与平面所成角等于直线与平面所成角,过作,垂足为,连接,为直线与平面所成角,利用直角三角形的性质可得结果.【详解】(I)取中点,连结,是平行四边形,平面,平面,平面.(II),又平面平面,又为等边三角形,为边的中点,平面由(I)可知,平面,平面平面平面.(III)取中点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度职业介绍服务与就业信息发布合同3篇
- 2024年度高端住宅软装设计及定制合同范本3篇
- 2023年国家能源集团宁夏专项招聘笔试真题
- 2024年体育赛事开幕式庆典活动策划执行合同3篇
- 教育器材性能提升租赁合同3篇
- 标准购销合同模板范本3篇
- 未过户车辆责任协议书3篇
- 河道水上运动协议3篇
- 机动车辆买卖合同3篇
- 毕业证书代领协议3篇
- 校长离任审计2022-2023年度述职报告工作总结(5篇)
- 眼科护理的国内外发展动态和趋势
- 三明医改调研社会实践报告
- 泵设备故障预警与诊断技术
- 2023年秋季国家开放大学-02151-计算机组成原理期末考试题带答案
- 导师带徒师徒互评表
- 萧公权-《中国政治思想史》第一编第二和第三章内容
- 《铸造用增碳剂》
- 一年级上心理健康教育《我是小学生了》课件PPT
- 山东第一医科大学护理伦理学期末复习题
- 清华物理习题库试题及答案光学
评论
0/150
提交评论