2023-2024学年上海市黄浦区市级名校高一下数学期末统考模拟试题含解析_第1页
2023-2024学年上海市黄浦区市级名校高一下数学期末统考模拟试题含解析_第2页
2023-2024学年上海市黄浦区市级名校高一下数学期末统考模拟试题含解析_第3页
2023-2024学年上海市黄浦区市级名校高一下数学期末统考模拟试题含解析_第4页
2023-2024学年上海市黄浦区市级名校高一下数学期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年上海市黄浦区市级名校高一下数学期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列2.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则3.两条平行直线与间的距离等于()A. B.2 C. D.44.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是()A. B. C. D.5.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形6.三棱锥则二面角的大小为()A. B. C. D.7.圆心为且过原点的圆的一般方程是A. B.C. D.8.在四边形中,,且·=0,则四边形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形9.函数的图象大致为()A. B. C. D.10.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切二、填空题:本大题共6小题,每小题5分,共30分。11.如图是一个算法的流程图,则输出的的值是________.12.设满足不等式组,则的最小值为_____.13.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.14.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.15.若,则________.16.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.18.在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.19.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.20.在△ABC中,D为BC边上一点,,设,.(1)试、用表示;(2)若,,且与的夹角为60°,求及的值.21.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

依据等差、等比数列的定义或性质进行判断。【详解】因为,,,所以一定不是等差数列,故选C。【点睛】本题主要考查等差、等比数列定义以及性质的应用。2、D【解析】

根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【点睛】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.3、C【解析】

先把直线方程中未知数的系数化为相同的,再利用两条平行直线间的距离公式,求得结果.【详解】解:两条平行直线与间,即两条平行直线与,故它们之间的距离为,故选:.【点睛】本题主要考查两条平行直线间的距离公式应用,注意未知数的系数必需相同,属于基础题.4、D【解析】

先求出AB的长,再求点P到直线AB的最小距离和最大距离,即得△ABP面积的最小值和最大值,即得解.【详解】由题得,由题得圆心到直线AB的距离为,所以点P到直线AB的最小距离为2-1=1,最大距离为2+1=3,所以△ABP的面积的最小值为,最大值为.所以△ABP的面积的取值范围为[1,3].故选D【点睛】本题主要考查点到直线的距离的计算,考查面积的最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、C【解析】

利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【点睛】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.6、B【解析】

P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【点睛】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.7、D【解析】

根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。8、A【解析】

由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.9、C【解析】

利用函数的性质逐个排除即可求解.【详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【点睛】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.10、C【解析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由程序框图,得运行过程如下:;,结束循环,即输出的的值是7.12、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.13、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.14、1【解析】

根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.15、【解析】

先求,再代入求值得解.【详解】由题得所以.故答案为【点睛】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】

正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在.【解析】

(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【点睛】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1)或;(2).【解析】试题分析:(1)利用升幂公式及两角和与差的余弦公式化简已知等式,可得,从而得,注意两解;(2)由,得,利用正弦定理得,从而可变为,利用三角形的内角和把此式化为一个角的函数,再由两角和与差的正弦公式化为一个三角函数形式,由的范围()结合正弦函数性质可得取值范围.试题解析:(1)由已知,得,化简得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.19、(1)从第27项开始(2)【解析】

(1)写出通项公式解不等式即可;(2)由(1)得数列最后一个负项为取得最大值处即可求解【详解】(1).解得.所以从第27项开始.(2)由上可知当时,最大,最大为.【点睛】本题考查等差数列的通项公式及前n项和的最值,考查推理能力,是基础题20、(1)(2),【解析】

(1)用表示,再用,表示即可;(2)由向量数量积运算及模的运算即可得解.【详解】解:(1)因为,所以,又,,所以;(2),,且与的夹角为60°,所以,则,,故.【点睛】本题考查了向量的减法运算,重点考查了向量数量积运算及模的运算,属基础题.21、(I);(II)见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论