版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省承德市鹰城一中高一数学第二学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则()A. B. C.-7 D.72.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%3.设全集,集合,,则()A. B.C. D.4.已知数列是首项为,公差为的等差数列,若,则()A. B. C. D.5.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)6.设等差数列,则等于()A.120 B.60 C.54 D.1087.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=08.已知两个等差数列,的前项和分别为,,若对任意的正整数,都有,则等于()A.1 B. C. D.9.设,,,若则,的值是()A., B.,C., D.,10.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.二、填空题:本大题共6小题,每小题5分,共30分。11.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.12.平面⊥平面,,,,直线,则直线与的位置关系是___.13.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.14.已知平行四边形的周长为,,则平行四边形的面积是_______15.函数的最小正周期为.16.在平面直角坐标系中,在轴、轴正方向上的投影分别是、,则与同向的单位向量是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?18.已知直线:及圆心为的圆:.(1)当时,求直线与圆相交所得弦长;(2)若直线与圆相切,求实数的值.19.为了解某城市居民的月平均用电量情况,随机抽查了该城市100户居民的月平均用电量(单位:度),得到频率分布直方图(如图所示).数据的分组依次为、、、、、、.(1)求频率分布直方图中的值;(2)求该城市所有居民月平均用电量的众数和中位数的估计值;(3)在月平均用电量为的四组用户中,采用分层抽样的方法抽取户居民,则应从月用电量在居民中抽取多少户?20.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各自随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:、、、、、,整理得到如下频率分布直方图:(1)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(2)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值甲与乙及方差甲与乙的大小关系(只需写出结论),并计算其中的甲、甲(同一组中的数据用该组区间的中点值作代表).21.已知,为第二象限角.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
把已知等式平方后可求得.【详解】∵,∴,即,,∵,∴,∴,,∴.故选C.【点睛】本题考查同角间的三角函数关系,考查两角和的正切公式,解题关键是把已知等式平方,并把1用代替,以求得.2、A【解析】
甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.3、A【解析】
进行交集、补集的运算即可.【详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.4、C【解析】
本题首先可根据首项为以及公差为求出数列的通项公式,然后根据以及数列的通项公式即可求出答案.【详解】因为数列为首项,公差的等差数列,所以,因为所以,,故选C.【点睛】本题考查如何判断实数为数列中的哪一项,主要考查等差数列的通项公式的求法,等差数列的通项公式为,考查计算能力,是简单题.5、A【解析】
不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。6、C【解析】
题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。【详解】,选C.【点睛】题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。也可将等式全部化为的表达式,整体代换计算出7、D【解析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.8、B【解析】
利用等差数列的性质将化为同底的,再化简,将分子分母配凑成前n项和的形式,再利用题干条件,计算。【详解】∵等差数列,的前项和分别为,,对任意的正整数,都有,∴.故选B.【点睛】本题考查等差数列的性质的应用,属于中档题。9、B【解析】
由向量相等的充要条件可得:,列出方程组,即可求解,得到答案.【详解】由题意,向量,,,又因为,所以,所以,解得,故选B.【点睛】本题主要考查了平面向量的数乘运算及向量相等的充要条件,其中解答中熟记向量的共线条件,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】
将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.12、【解析】
利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.13、1【解析】
由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.14、【解析】
设,根据条件可以求出,两边平方可以得到关系式,由余弦定理可以表示出,把代入得到的关系式,联立求出的值,过作垂直于,设,则可以表示,利用勾股定理,求出的值,确定长,即求出平行四边形的面积【详解】设又,由余弦定理将代入,得到将(2)代入(1)得到可以解得:(另一种情况不影响结果),过作垂直于,设,则,所以填写【点睛】几何题如果关系量理清不了,可以尝试作图,引入相邻边的参数,通过方程把参数求出,平行四边形问题可以通过转化变为三角形问题,进而把问题简单化.15、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.16、【解析】
根据题意得出,再利用单位向量的定义即可求解.【详解】由在轴、轴正方向上的投影分别是、,可得,所以与同向的单位向量为,故答案为:【点睛】本题考查了向量的坐标表示以及单位向量的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)v=40千米/小时,车流量最大,最大值为11.08千辆/小时(2)汽车的平均速度应控制在25≤v≤64这个范围内【解析】
(1)将已知函数化简,利用基本不等式求车流量y最大值;
(2)要使该时段内车流量至少为10千辆/小时,即使,解之即可得汽车的平均速度的控制范围.【详解】解:(1)=≤=≈11.08,当v=,即v=40千米/小时,车流量最大,最大值为11.08千辆/小时.(2)据题意有:,化简得,即,所以,所以汽车的平均速度应控制在这个范围内.【点睛】本题以已知函数关系式为载体,考查基本不等式的使用,考查解不等式,属于基础题.18、(1)弦长为4;(1)0【解析】
(1)由得到直线过圆的圆心,可求得弦长即为圆的直径4;(1)由点到直线的距离等于半径1,得到关于的方程,并求出.【详解】(1)当时,直线:,圆:.圆心坐标为,半径为1.圆心在直线上,则直线与圆相交所得弦长为4.(1)由直线与圆相切,则圆心到直线的距离等于半径,所以,解得:.【点睛】本题考查直线与圆相交、相切两种位置关系,求解时注意点到直线距离公式的应用,考查基本运算求解能力.19、(1);(2)众数为度,中位数为度;(3)户.【解析】
(1)利用频率分布直方图中所有矩形面积之和为可求得的值;(2)利用频率分布直方图中最高矩形底边的中点值为众数,可得出该城市所有居民月平均用电量的众数,利用中位数左边的矩形面积之和为可求得该城市所有居民月平均用电量的中位数;(3)计算出月用电量在的用户在月平均用电量为的用户中所占的比例,乘以可得出结果.【详解】(1)因为,所以;(2)月平均用电量众数的估计值为度,,故中位数,所以,,解得,故月平均用电量中位数的估计值为度;(3)月均用电量在、、、的用户分别为户、户、户、户,其中,月均用电量为的用户在月平均用电量为的用户中所占的比例为,所以在月均用电量为的用户中应抽取(户).【点睛】本题考查利用频率分布直方图求参数、中位数、众数,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.20、(1);(2)甲乙,甲乙,甲=,甲=【解析】
(1)根据每组小矩形的面积确定中位数所在区间,即可求解;(2)根据直方图特征即可判定甲乙,甲乙,根据平均数和方差的公式分别计算求值.【详解】(1)由甲高中频率分布直方图可得:第一组频率0.1,第二组频率0.2,第三组频率0.3,所以中位数在第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年影视短片美术风格指导与聘用合同3篇
- 2024年度砌体施工劳务承包与项目管理合同3篇
- 2024年度招投标中标单位环保责任与廉洁履约合同3篇
- 2024年度高端商务咨询委托服务合同范本3篇
- 2024年双方签署的规范离婚协议及子女监护权转移合同3篇
- 火法炼铜课程设计
- 2024年新型绿色能源信托受益权转让实施合同3篇
- 2024南通商品房买卖合同及智能家居安装服务协议3篇
- 小班动物科学课程设计
- 有关符号的游戏课程设计
- 背栓工艺课件
- 血流动力学监测ppt
- 消化内科诊疗指南和技术操作规范
- 检验科制度汇编
- 开题报告基于MSP430单片机的温湿度测量系统设计
- 固定技术规范-电缆保护管-MPP
- 铁路桥梁墩身施工专项方案
- 燃气-蒸汽联合循环机组详介
- 初中信息技术课程教学设计案例
- 计价格[1999]1283号_建设项目前期工作咨询收费暂行规定
- 展厅展馆中控系统解决方案
评论
0/150
提交评论