2024届湖北省武汉市华中师大一附中高一下数学期末质量跟踪监视试题含解析_第1页
2024届湖北省武汉市华中师大一附中高一下数学期末质量跟踪监视试题含解析_第2页
2024届湖北省武汉市华中师大一附中高一下数学期末质量跟踪监视试题含解析_第3页
2024届湖北省武汉市华中师大一附中高一下数学期末质量跟踪监视试题含解析_第4页
2024届湖北省武汉市华中师大一附中高一下数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市华中师大一附中高一下数学期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列an中,若a3+A.6 B.7 C.8 D.92.执行如图所示的程序框图,若输人的n值为2019,则S=A.-1 B.-12 C.13.直线被圆截得的弦长为()A.4 B. C. D.4.高一某班男生36人,女生24人,现用分层抽样的方法抽取一个容量为的样本,若抽出的女生为12人,则的值为()A.18 B.20 C.30 D.365.将的图像怎样移动可得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.38.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B. C. D.9.等差数列中,则()A.8 B.6 C.4 D.310.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.6二、填空题:本大题共6小题,每小题5分,共30分。11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.12.在等差数列中,若,则__________.13.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.14.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.15.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.16.若存在实数,使不等式成立,则的取值范围是_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,其中,,.(1)求的单调递增区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值.18.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.19.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.20.如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援?(角度精确到1°,参考数据:,)21.在等差数列中,已知,.(I)求数列的通项公式;(II)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

通过等差数列的性质可得答案.【详解】因为a3+a9=17【点睛】本题主要考查等差数列的性质,难度不大.2、B【解析】

根据程序框图可知,当k=2019时结束计算,此时S=cos【详解】计算过程如下表所示:周期为6n2019k12…20182019S12-1…-k<n是是是是否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.3、B【解析】

先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.4、C【解析】

根据分层抽样等比例抽样的特点,进行计算即可.【详解】根据题意,可得,解得.故选:C.【点睛】本题考查分层抽样的等比例抽取的性质,属基础题.5、C【解析】

因为将向左平移个单位可以得到,得解.【详解】解:将向左平移个单位可以得到,故选C.【点睛】本题考查了函数图像的平移变换,属基础题.6、C【解析】

利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。7、A【解析】

利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【点睛】本题考查正弦定理及余弦定理推论的应用.8、B【解析】

分别讨论当圆柱的高为4时,当圆柱的高为2时,求出圆柱轴截面面积即可得解.【详解】解:当圆柱的高为4时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,当圆柱的高为2时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,综上所述,圆柱的轴截面面积为,故选:B.【点睛】本题考查了圆柱轴截面面积的求法,属基础题.9、D【解析】

设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.二、填空题:本大题共6小题,每小题5分,共30分。11、160【解析】

∵某个年级共有980人,要从中抽取280人,∴抽取比例为280980∴此样本中男生人数为27故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题12、【解析】

利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.13、【解析】

设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.14、【解析】

设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【点睛】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.15、【解析】

解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.16、;【解析】

不等式转化为,由于存在,使不等式成立,因此只要求得的最小值即可.【详解】由题意存在,使得不等式成立,当时,,其最小值为,∴.故答案为.【点睛】本题考查不等式能成立问题,解题关键是把问题转化为求函数的最值.不等式能成立与不等式恒成立问题的转化区别:在定义域上,不等式恒成立,则,不等式能成立,则,不等式恒成立,则,不等式能成立,则.转化时要注意是求最大值还是求最小值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)化简得,代入,求得增区间为;(2)由求得,余弦定理得.因为向量与共线,所以,由正弦定理得,解得.试题解析:(1)由题意知,,在上单调递增,令,得,的单调递增区间.(2),又,即.,由余弦定理得.因为向量与共线,所以,由正弦定理得.考点:三角函数恒等变形、解三角形.18、(1)(2)【解析】

(1)设圆心坐标为,根据,求得,进而得到圆的方程;(2)由在圆上,则,得到,求得,进而求得圆的切线方程.【详解】(1)由题意,圆心在直线上,设圆心坐标为,由,即,所以,圆心,半径,圆的标准方程为.(2)设切线方程为,因为在圆上,所以,所以,又,所以,所以切线方程为,即,所以过的切线方程.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的位置关系的应用,其中解答中熟记圆的方程的形式,以及圆的切线的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1),;(2)减区间为,对称轴方程为【解析】

(1)先根据平移后周期不变求得,再根据三角函数的平移方法求得即可.(2)根据(1)中,代入可得,利用辅助角公式求得,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数的图象向左平移个单位长度后与函数图象重合,所以.所以,因为,所以.(2)由(1),,所以,.令,解得所以函数的单调递减区间为.令,可得图象的对称轴方程为.【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.20、乙船应朝北偏东约的方向沿直线前往处救援.【解析】

根据题意,求得,利用余弦定理求得的长,在中利用正弦定理求得,根据题目所给参考数据求得乙船行驶方向.【详解】解:由已知,则,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,则,故乙船应朝北偏东约的方向沿直线前往处救援.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论