安徽省合肥市三十五中2024年高一下数学期末预测试题含解析_第1页
安徽省合肥市三十五中2024年高一下数学期末预测试题含解析_第2页
安徽省合肥市三十五中2024年高一下数学期末预测试题含解析_第3页
安徽省合肥市三十五中2024年高一下数学期末预测试题含解析_第4页
安徽省合肥市三十五中2024年高一下数学期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市三十五中2024年高一下数学期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线过点,且在纵坐标轴上的截距为横坐标轴上的截距的两倍,则直线的方程为()A. B.C.或 D.或2.已知,是两个变量,下列四个散点图中,,虽负相关趋势的是()A. B.C. D.3.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D4.下列函数中,既是奇函数又是增函数的为()A. B. C. D.5.等比数列中,,则等于()A.16 B.±4 C.-4 D.46.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在7.在等比数列中,成等差数列,则公比等于()A.1

2 B.−1

−2 C.1

−2 D.−1

28.已知角满足,,且,,则的值为()A. B. C. D.9.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交10.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为__________.12.在平行六面体中,为与的交点,若存在实数,使向量,则__________.13.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.15.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.16.已知,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.18.如图,在三棱锥中,,分别为,的中点,且.(1)证明:平面;(2)若平面平面,证明:.19.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.20.已知圆与直线相切(1)若直线与圆交于两点,求(2)已知,设为圆上任意一点,证明:为定值21.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据题意,分直线是否经过原点2种情况讨论,分别求出直线的方程,即可得答案.【详解】根据题意,直线分2种情况讨论:①当直线过原点时,又由直线经过点,所求直线方程为,整理为,②当直线不过原点时,设直线的方程为,代入点的坐标得,解得,此时直线的方程为,整理为.故直线的方程为或.故选:D.【点睛】本题考查直线的截距式方程,注意分析直线的截距是否为0,属于基础题.2、C【解析】由图可知C选项中的散点图描述了随着的增加而减小的变化趋势,故选C3、A【解析】

根据向量共线定理进行判断即可.【详解】因为,且,有公共点B,所以A,B,D三点共线.故选:A.【点睛】本题考查了用向量共线定理证明三点共线问题,属于常考题.4、D【解析】

根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.5、D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.6、C【解析】

首先根据求出数列、公差之间的关系,再代入即可。【详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。7、C【解析】

设出基本量,利用等比数列的通项公式,再利用等差数列的中项关系,即可列出相应方程求解【详解】等比数列中,设首项为,公比为,成等差数列,,即,或答案选C【点睛】本题考查等差数列和等比数列求基本量的问题,属于基础题8、D【解析】

根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.9、D【解析】

若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.10、C【解析】

根据向量的定义及运算法则一一分析选项正误即可.【详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【点睛】本题考查平面向量的基本定义和运算法则,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由得,即,把与互换即可得出【详解】由得所以把与互换,可得故答案为:【点睛】本题考查的是反函数的求法,较简单.12、【解析】

在平行六面体中把向量用用表示,再利用待定系数法,求得.再求解。【详解】如图所示:因为,又因为,所以,所以.故答案为:【点睛】本题主要考查了空间向量的基本定理,还考查了运算求解的能力,属于基础题.13、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.14、1【解析】应从丙种型号的产品中抽取件,故答案为1.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.15、【解析】

将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.16、【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【点睛】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.18、(1)见解析(2)见解析【解析】

(1)先证明,再证明平面;(2)先证明平面,再证明.【详解】证明:(1)因为,分别为,的中点,所以.又平面,平面,所以平面.(2)因为,为中点,所以.又平面平面.平面平面,所以平面.又平面,所以.【点睛】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)或;(2)平行【解析】

(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的直线,当直线的斜率不存在时,直线为:,满足题意;当直线的斜率存在时,设直线的斜率为,直线方程为:,故,解得,故直线方程为:.综上所述:所求直线的方程:或.(2)由题意知,直线PA,PB的倾斜角互补,且直线PA,PB的斜率均存在,设两直线的倾斜角为和,,,因为,由正切的性质,则,不妨设直线的斜率为,则PB的斜率为,即:,则:,由,得,点的横坐标为一定是该方程的解,故可得,同理,,,,直线AB与OP平行.【点睛】本题考查了圆的标准方程,已知弦长求直线方程,考查了直线与圆的位置关系以及学生的计算能力,属于中档题.20、(1)4;(2)详见解析.【解析】

(1)利用直线与圆相切,结合点到直线距离公式求出半径,从而得到圆的方程;根据直线被圆截得弦长的求解方法可求得结果;(2)设,则,利用两点间距离公式表示出,化简可得结果.【详解】(1)由题意知,圆心到直线的距离:圆与直线相切圆方程为:圆心到直线的距离:,(2)证明:设,则即为定值【点睛】本题考查直线与圆的综合应用问题,涉及到直线与圆位置关系的应用、直线被圆截得弦长的求解、两点间距离公式的应用、定值问题的求解.解决定值问题的关键是能够用变量表示出所求量,通过化简、消元整理出结果.21、(1)(2)的最大值为,此时【解析】

(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论