




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市第八中学2024届高一下数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A. B.C. D.2.要得到函数的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.已知角的终边经过点,则()A. B. C. D.4.向量,,若,则实数的值为A. B. C. D.5.已知内角的对边分别为,满足且,则△ABC()A.一定是等腰非等边三角形 B.一定是等边三角形C.一定是直角三角形 D.可能是锐角三角形,也可能是钝角三角形6.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则7.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.8.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.149.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶10.在中,是的中点,,,相交于点,若,,则()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.12.不等式的解集为________13.已知数列满足,若,则的所有可能值的和为______;14.方程在区间的解为_______.15.函数的最小正周期为.16.两圆,相切,则实数=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系xOy中,已知圆C:x2⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A,B两点,且OA=AB,求直线l的方程.18.将函数的图像向右平移1个单位,得到函数的图像.(1)求的单调递增区间;(3)设为坐标原点,直线与函数的图像自左至右相交于点,,,求的值.19.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.20.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.21.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由于频率分布直方图的组距为5,去掉C、D,又[0,5),[5,10)两组各一人,去掉B,应选A.2、D【解析】
直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位.故选:D.【点睛】本题考查三角函数图象平移的应用问题,属于基础题.3、C【解析】
首先根据题意求出,再根据正弦函数的定义即可求出的值.【详解】,.故选:C【点睛】本题主要考查正弦函数的定义,属于简单题.4、C【解析】
利用向量平行的坐标表示,即可求出.【详解】向量,,,即解得.故选.【点睛】本题主要考查向量平行的坐标表示.5、B【解析】
根据正弦定理可得和,然后对进行分类讨论,结合三角形的性质,即可得到结果.【详解】在中,因为,所以,又,所以,又当时,因为,所以时等边三角形;当时,因为,所以不存在,综上:一定是等边三角形.故选:B.【点睛】本题主要考查了正弦定理的应用,解题过程中注意两解得情况,一般需要检验,本题属于基础题.6、D【解析】
逐一分析选项,得到答案.【详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【点睛】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.7、A【解析】
根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.8、D【解析】
将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【详解】依题意,解得,故.故选:D.【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题.9、A【解析】
利用对立事件、互斥事件的定义直接求解.【详解】一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.【点睛】本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.10、D【解析】由题意知,所以,解得,所以,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.12、【解析】因为所以,即不等式的解集为.13、36【解析】
根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.14、或【解析】
由题意求得,利用反三角函数求出方程在区间的解.【详解】解:,得,,或,;方程在区间的解为:或.故答案为:或.【点睛】本题考查了三角函数方程的解法与应用问题,是基础题.15、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.16、0,±2【解析】
根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x+3)2+(y-2)2【解析】
(1)设出圆E的标准方程为(x-a)2+(y-b)2=r2,由圆E与x轴相切,可得b=r,由圆E与圆C外切,可得两圆心距等于半径之和,由此解出(2)法一:设出A点坐标为(x0,y0),根据OA=AB,可得到点B坐标,把A、B两点坐标代入圆法二:设AB的中点为M,连结CM,CA,设出直线l的方程,由题求出CM的长,利用点到直线的距离即可得求出k值,从而得到直线l的方程【详解】⑴设圆E的标准方程为(x-a)2+(y-b)2=r2因为圆E的半径为2,与x轴相切,所以b=2因为圆E与圆C外切所以EC=3,即a由①②解得a=±3,b=2故圆E的标准方程为(x+3)2+⑵方法一;设A(因为OA=AB,所以A为OB的中点,从而B(2因为A,B都在圆C上所以x解得x0=-故直线l的方程为:y=±方法二:设AB的中点为M,连结CM,CA设AM=t,CM=d因为OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由题可知直线l的斜率一定存在,设直线l的方程为y=kx则d=2k故直线l的方程为y=±【点睛】本题考查圆的标准方程与直线方程,解题关键是设出方程,找出关系式,属于中档题。18、(1)();(2)【解析】
(1)通过“左加右减”可得到函数的解析式,从而求得的单调递增区间;(2)先求得直线与轴的交点为,则,又,关于点对称,所以,从而.【详解】(1)令,,的单调递增区间是()(2)直线与轴的交点为,即为函数的对称中心,且,关于点对称,【点睛】本题主要考查三角函数平移,增减区间的求解,对称中心的性质及向量的基本运算,意在考查学生的分析能力和计算能力.19、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.20、(1)或(2)【解析】
(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网医疗平台在线问诊患者健康档案管理报告
- 浙江电商仓库租赁协议书
- 村级道路协管员协议合同
- 移动员工合同续签协议书
- 美业入股协议合同书模板
- 高速公路护坡合同协议书
- 潮州打印机租赁协议合同
- 汝州市餐饮分包协议合同
- 派出所要求监控合同范本
- 物品回收后加工合同范本
- 2024年度医患沟通课件
- 2024届高考英语作文复习专项:读后续写“助人为乐”类范文5篇 讲义素材
- 垃圾焚烧 vs. 垃圾填埋了解它们的区别和影响
- 四年级口算题大全1000题
- 在口腔影像科轮转出科小结
- GB/T 18849-2023机动工业车辆制动器性能和零件强度
- 高中历史教学中如何渗透爱国主义教育
- 社区网格员笔试考试模拟试题
- 中国古代文学史PPT完整PPT完整全套教学课件
- 子宫内膜多发性息肉-疾病研究白皮书
- 新疆阜康市面向社会公开招考56名社区工作者、到村工作大学生模拟预测(共500题)笔试参考题库+答案详解
评论
0/150
提交评论