黑龙江绥化一中2024届高一数学第二学期期末调研试题含解析_第1页
黑龙江绥化一中2024届高一数学第二学期期末调研试题含解析_第2页
黑龙江绥化一中2024届高一数学第二学期期末调研试题含解析_第3页
黑龙江绥化一中2024届高一数学第二学期期末调研试题含解析_第4页
黑龙江绥化一中2024届高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江绥化一中2024届高一数学第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为()A.193 B.192 C.191 D.1902.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α∥β,mα,nβ,则m∥n B.若α⊥β,mα,则m⊥βC.若α⊥β,mα,nβ,则m⊥n D.若α∥β,mα,则m∥β3.要得到函数的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位4.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.6.以下说法正确的是()A.零向量与单位向量的模相等B.模相等的向量是相等向量C.已知均为单位向量,若,则与的夹角为D.向量与向量是共线向量,则四点在一条直线上7.函数图像的一个对称中心是()A. B. C. D.8.等差数列前项和为,满足,则下列结论中正确的是()A.是中的最大值 B.是中的最小值C. D.9.如果在一次实验中,测得x,y的四组数值分别是A1,3,B2,3.8,C3,5.2,D4,6,则A.y=x+1.9 B.C.y=0.95x+1.04 D.10.数列中,对于任意,恒有,若,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,,,,作交于,则与平面所成角的正弦值是________.12.设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.13.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.14.函数的最小正周期为_______.15.在中,角的对边分别为.若,则的值为__________.16.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为.已知(1)若,,求的面积;(2)若的面积为,且,求的值.18.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.19.如图,在中,,,点在边上,且,.(1)求;(2)求的长.20.已知数列,.(1)若数列是等比数列,且,求数列的通项公式;(2)若数列是等差数列,且,数列满足,当时,求的值.21.如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)直线与平面所成角的正切值;(2)三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

按分层抽样的定义,按比例计算.【详解】由题意,解得.故选:B.【点睛】本题考查分层抽样,属于简单题.2、D【解析】

在中,与平行或异面;在中,与相交、平行或;在中,与相交、平行或异面;在中,由线面平行的性质定理得.【详解】由,是两条不同的直线,,是两个不同的平面,知:在中,若,,,则与平行或异面,故错误;在中,若,,则与相交、平行或,故错误;在中,若,,,则与相交、平行或异面,故错误;在中,若,,则由线面平行的性质定理得,故正确.故选.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.3、D【解析】

直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位.故选:D.【点睛】本题考查三角函数图象平移的应用问题,属于基础题.4、D【解析】

由已知得,然后根据不等式的性质判断.【详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.5、B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.6、C【解析】

根据零向量、单位向量、相等向量,向量的模、向量共线、向量数量积的运算的知识分析选项,由此确定正确选项.【详解】对于A选项,零向量的模是,单位向量的模是,两者不相等,故A选项说法错误.对于B选项,两个向量大小和方向都相等才是相等向量,故B选项说法错误.对于C选项,由,故C选项说法正确.对于D选项,向量与向量是共线向量,但是这两个向量没有公共点,所以无法判断是否在一条直线上.故D选项说法错误.故选:C【点睛】本小题主要考查向量的有关概念,考查向量数量积的运算,属于基础题.7、B【解析】

由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.8、D【解析】本题考查等差数列的前n项和公式,等差数列的性质,二次函数的性质.设公差为则由等差数列前n项和公式知:是的二次函数;又知对应二次函数图像的对称轴为于是对应二次函数为无法确定所以根据条件无法确定有没有最值;但是根据二次函数图像的对称性,必有即故选D9、B【解析】

求出样本数据的中心(2.5,4.5),依次代入选项中的回归方程.【详解】∵x∴样本数据的中心为(2.5,4.5),将它依次代四个选项,只有B符合,∴y与x之间的回归直线方程是y=1.04x+1.9【点睛】本题的考点是回归直线经过样本点的中心,而不是考查利用最小二乘法求回归直线方程.10、D【解析】因为,所以

,

.选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取中点,中点,易得面,再求出到平面的距离,进而求解再得出到平面的距离.从而算得与平面所成角的正弦值即可.【详解】如图,取中点,中点,连接.因为,,所以.因为,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距离.到面的距离.又因为,所以,所以,所以,故到面的距离.故与平面所成角的正弦值是故答案为:【点睛】本题主要考查了空间中线面垂直的性质与运用,同时也考查了余弦定理在三角形中求线段与角度正余弦值的方法,需要根据题意找到点到面的距离求解,再求出线面的夹角.属于难题.12、【解析】试题分析:设等比数列的公比为,由得,,解得.所以,于是当或时,取得最大值.考点:等比数列及其应用13、.【解析】

从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.14、【解析】

将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.15、1009【解析】

利用余弦定理化简所给等式,再利用正弦定理将边化的关系为角的关系,变形化简即可得出目标比值.【详解】由得,即,所以,故.【点睛】本题综合考查正余弦定理解三角形,属于中档题.16、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先根据计算出与,再利用余弦定理求出b边,最后利用求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为与的关系式,再结合面积求出c的值.【详解】解:(1)因为,所以.又,所以.因为,,且,所以,解得,所以.(2)因为,由正弦定理,得.又,所以.又,得,所以,所以.【点睛】本题考查正余弦定理解三角形,属于基础题.18、(1)见证明;(2);(3)【解析】

(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段相交,交点为,连接,;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长【详解】(1)证明:由平面,可得,又由,,故平面.又平面,所以.(2)如图,作于点,连接.由,,可得平面.因此,从而为二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值为.(3)因为,故过点作的平行线必与线段相交,设交点为,连接,;∴或其补角为异面直线与所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,设;在中,;在中,;∴在中,,∴;;解得;∴.【点睛】本题主要考查线线垂直、二面角的平面角、异面直线所成角的.属于中档题.19、(1);(2)7.【解析】试题分析:(I)在中,利用外角的性质,得即可计算结果;(II)由正弦定理,计算得,在中,由余弦定理,即可计算结果.试题解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考点:正弦定理与余弦定理.20、(1);(2).【解析】

(1)数列是公比为的等比数列,由等比数列的通项公式解方程可得首项和公比,即可得到所求通项;(2)数列是公差为的等差数列,由等差数列的通项公式解方程可得首项和公差,可得数列的通项,进而得到,再由指数的运算性质和等差数列的求和公式,计算即可得到所求值.【详解】解:(1)数列是公比为的等比数列,,,可得,,解得,,可得,;(2)数列是公差为的等差数列,,,可得,,解得,,则,,,即可得,可得,解得或(舍去).【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于中档题.21、(1);(2)【解析】

(1)要求直线与平面所成角的正切值,先要找到直线在平面上的射影,即在直线上找一点作平面的垂线,结合已知与图形,转化为证明平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论