四川省安岳县周礼中学 2023-2024学年数学高一下期末质量跟踪监视试题含解析_第1页
四川省安岳县周礼中学 2023-2024学年数学高一下期末质量跟踪监视试题含解析_第2页
四川省安岳县周礼中学 2023-2024学年数学高一下期末质量跟踪监视试题含解析_第3页
四川省安岳县周礼中学 2023-2024学年数学高一下期末质量跟踪监视试题含解析_第4页
四川省安岳县周礼中学 2023-2024学年数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省安岳县周礼中学2023-2024学年数学高一下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=2.已知向量若为实数,则=()A.2 B.1 C. D.3.“是第二象限角”是“是钝角”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要4.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为()A.54 B. C.90 D.816.已知数列共有项,满足,且对任意、,有仍是该数列的某一项,现给出下列个命题:(1);(2);(3)数列是等差数列;(4)集合中共有个元素.则其中真命题的个数是()A. B. C. D.7.若函数的最小正周期为2,则()A.1 B.2 C. D.8.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-29.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为()A.48 B.64 C.120 D.8010.若平面向量,满足,,且,则等于()A. B. C.2 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.设,且,则的取值范围是______.12.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.13.已知圆锥的母线长为1,侧面展开图的圆心角为,则该圆锥的体积是______.14.已知向量,则___________.15.若,且,则的最小值为_______.16.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求;(2)求的值.18.在公比不为1的等比数列中,,且依次成等差数列(1)求数列的通项公式;(2)令,设数列的前项和,求证:19.如图,正方体棱长为,连接,,,,,,得到一个三棱锥,求:(1)三棱锥的表面积与正方体表面积的比值;(2)三棱锥的体积.20.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.21.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.2、D【解析】

求出向量的坐标,然后根据向量的平行得到所求值.【详解】∵,∴.又,∴,解得.故选D.【点睛】本题考查向量的运算和向量共线的坐标表示,属于基础题.3、B【解析】

由α是钝角可得α是第二象限角,反之不成立,则答案可求.【详解】若α是钝角,则α是第二象限角;反之,若α是第二象限角,α不一定是钝角,如α=﹣210°.∴“α是第二象限角”是“α是钝角”的必要非充分条件.故选B.【点睛】本题考查钝角、象限角的概念,考查了充分必要条件的判断方法,是基础题.4、C【解析】

根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.5、A【解析】

由已知中的三视图可得:该几何体是一个以正方形为底面的斜四棱柱,进而得到答案.【详解】由三视图可知,该多面体是一个以正方形为底面的斜四棱柱,四棱柱的底面是边长为3的正方形,四棱柱的高为6,则该多面体的体积为.故选:A.【点睛】本题考查三视图知识及几何体体积的计算,根据三视图判断几何体的形状,再由几何体体积公式求解,属于简单题.6、D【解析】

对任意的、,有仍是该数列的某一项,可得出是该数列中的项,由于,可得,即,以此类推即可判断出结论.【详解】对任意、,有仍是该数列的某一项,,当时,则,必有,即,而或.若,则,而、、,舍去;若,此时,,同理可得.可得数列为:、、、、.综上可得:(1);(2);(3)数列是等差数列;(4)集合,该集合中共有个元素.因此,(1)(2)(3)(4)都正确.故选:D.【点睛】本题考查有关数列命题真假的判断,涉及数列的新定义,考查推理能力与分类讨论思想的应用,属于中等题.7、C【解析】

根据可求得结果.【详解】由题意知:,解得:本题正确选项:【点睛】本题考查余弦型函数最小正周期的求解问题,属于基础题.8、A【解析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.9、D【解析】

先还原几何体,再根据锥体侧面积公式求结果.【详解】几何体为一个正四棱锥,底面为边长为8的正方体,侧面为等腰三角形,底边上的高为5,因此四棱锥的侧面积为,选D.【点睛】解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.10、B【解析】

由,可得,再结合,展开可求出答案.【详解】由,可知,展开可得,所以,又,,所以.故选:B.【点睛】本题考查向量数量积的应用,考查学生的计算求解能力,注意向量的平方等于模的平方,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【点睛】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.12、【解析】

如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.13、【解析】

根据题意得,解得,求得圆锥的高,利用体积公式,即可求解.【详解】设圆锥底面的半径为,根据题意得,解得,所以圆锥的高,所以圆锥的体积.【点睛】本题主要考查了圆锥的体积的计算,以及圆锥的侧面展开图的应用,其中解答中根据圆锥的侧面展开图,求得圆锥的底面圆的半径是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

根据向量夹角公式可求出结果.【详解】.【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.15、【解析】

将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.16、.【解析】

由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据三角函数的基本关系式,可得,再结合正切的倍角公式,即可求解;(2)由(1)知,结合三角函数的基本关系式,即可求解,得到答案.【详解】(1)由,根据三角函数的基本关系式,可得,所以.(2)由(1)知,又由.【点睛】本题主要考查了三角函数的基本关系式和正切的倍角公式的化简求值,其中解答中熟记三角函数的基本关系式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.18、(1)(2)见证明【解析】

(1)根据已知条件得到关于的方程组,解方程组得的值,即得数列的通项公式;(2)先求出,,再利用裂项相消法求,不等式即得证.【详解】(1)设公比为,,,成等差数列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【点睛】本题主要考查等比数列通项的求法,考查等差数列前n项和的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1);(2)【解析】试题分析:(1)求出三棱锥的棱长为,即可求出三棱锥的表面积与正方体表面积的比值;(2)利用割补法,即可求出三棱锥的体积.试题解析:(1)正方体的棱长为,则三棱锥的棱长为,表面积为,正方体表面积为,∴三棱锥的表面积与正方体表面积的比值为(2)三棱锥的体积为20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中三等奖的概率为设事件为“顾客未中奖”则由对立事件概率的性质可得所以未中奖的概率为.【点睛】本题考查了古典概型概率的计算方法,对立事件概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论