版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省枣庄市第十六中学高一数学第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在区间上是减函数的是()A. B. C. D.2.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形3.圆和圆的公切线条数为()A.1 B.2 C.3 D.44.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.05.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.已知向量,且,则m=()A.−8 B.−6C.6 D.87.设点是函数图象上的任意一点,点满足,则的最小值为()A. B. C. D.8.已知实数满足约束条件,则目标函数的最小值为()A. B. C.1 D.59.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.10.若是等差数列,则下列数列中也成等差数列的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则函数的最小值是_________.12.已知,为第二象限角,则________13.函数的定义域为__________;14.某企业利用随机数表对生产的800个零件进行抽样测试,先将800个零件进行编号,编号分别为001,002,003,…,800从中抽取20个样本,如下提供随机数表的第行到第行:若从表中第6行第6列开始向右依次读取个数据,则得到的第个样本编号是_______.15.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.16.若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.18.已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:x04060120Q020(1)你认为哪一个是符合实际的函数模型,请说明理由;(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?19.已知,,,,求的值.20.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.21.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.
在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.2、C【解析】
先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解析】
判断两圆的位置关系,根据两圆的位置关系判断两圆公切线的条数.【详解】圆的标准方程为,圆心坐标为,半径长为.圆的标准方程为,圆心坐标为,半径长为.圆心距为,由于,即,所以,两圆相交,公切线的条数为,故选B.【点睛】本题考查两圆公切线的条数,本质上就是判断两圆的位置关系,公切线条数与两圆位置的关系如下:①两圆相离条公切线;②两圆外切条公切线;③两圆相交条公切线;④两圆内切条公切线;⑤两圆内含没有公切线.4、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.5、D【解析】略6、D【解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.7、B【解析】
函数表示圆位于x轴下面的部分.利用点到直线的距离公式,求出最小值.【详解】函数化简得.圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题.8、A【解析】
作出不等式组表示的平面区域,再观察图像即可得解.【详解】解:先作出不等式组表示的平面区域,如图所示,由图可知目标函数所对应的直线过点时目标函数取最小值,则,故选:A.【点睛】本题考查了简单的线性规划问题,重点考查了数形结合的数学思想方法,属基础题.9、A【解析】
直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.10、C【解析】
根据等差数列的定义,只需任意相邻的后一项与前一项的差为定值即可.【详解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],与n有关系,因此不是等差数列.B:==与n有关系,因此不是等差数列.C:3an+1﹣3an=3(an+1﹣an)=3d为常数,仍然为等差数列;D:当数列{an}的首项为正数、公差为负数时,{|an|}不是等差数列;故选:C【点睛】本题考查了等差数列的定义及其通项公式,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用基本不等式可求得函数的最小值.【详解】,由基本不等式得,当且仅当时,等号成立,因此,当时,函数的最小值是.故答案为:.【点睛】本题考查利用基本不等式求函数的最值,考查计算能力,属于基础题.12、【解析】
先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.13、【解析】
根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.14、1【解析】
根据随机数表法抽样的定义进行抽取即可.【详解】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,1合适则满足条件的6个编号为436,535,577,348,522,1,则第6个编号为1,故答案为1.【点睛】本题考查了简单随机抽样中的随机数表法,主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.本题属于基础题.15、【解析】
由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.16、【解析】
,则,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.18、(1)选择模型①,见解析;(2)80.【解析】
(1)由题意可知所选函数模型应为单调递增函数,即可判断选择;(2)将,代入函数型①,可得出的值,进而可得出总耗油量关于速度的函数关系式,进而得解.【详解】(1)选择模型①理由:由题意可知所选函数模型应为单调递增函数,而函数模型②为一个单调递减函数,故选择模型①.(2)将,代入函数型①,可得:,则,总耗油量:,当时,W有最小值30.甲地到乙地,这辆车以80km/h的速度行驶才能使总耗油量最少.【点睛】本题考查函数模型的实际应用,考查逻辑思维能力,考查实际应用能力,属于常考题.19、【解析】
根据角的范围结合条件可求出,的值,然后求出的值,再由二倍角公式可求解.【详解】由,,得.又,则.由,,得.所以又所以【点睛】本题考查两角和与差的三角函数公式和同角三角函数关系以及二倍角公式,考察角变换的应用,属于中档题.20、【解析】
连接,由题意,得米,米,,在△中,由余弦定理可得答案.【详解】设该扇形的半径为米,连接,如图所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校长聘用合同
- 2024至2030年触媒项目投资价值分析报告
- 2024至2030年简单压榨器项目投资价值分析报告
- 2024至2030年定量超声骨质成像与测量系统项目投资价值分析报告
- 2024至2030年中国菠萝浓缩果汁数据监测研究报告
- 2024劳务承揽合同范本加工承揽合同范本2
- 2024标准农村土地承包合同书范本
- 2024至2030年中国自动冷凝泵行业投资前景及策略咨询研究报告
- 2024年低发泡塑料项目可行性研究报告
- 2024至2030年中国水曲柳封边台板行业投资前景及策略咨询研究报告
- 南京UPFC工程电网交流保护与UPFC保护分析
- 中国南阳介绍PPTppt
- 污水处理厂常见问题
- 温州市第十四高级中学化学学科课程建设纲要
- 输煤运行专业危险点及防范措施
- 语文实践活动评价量规表
- 《踏雪寻梅》合唱谱
- 供销差治理工作方案
- 烈士陵园改造技术标完整版94页
- 2021通用技术学业水平测试真题库最全
- 慢性静脉疾病的CEAP分级
评论
0/150
提交评论