版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省三河市第九中学2023-2024学年高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知变量x,y满足约束条件x+y-2≥0,y≤2,x-y≤0,则A.2 B.3 C.4 D.62.已知向量,满足,在上的投影(正射影的数量)为-2,则的最小值为()A. B.10 C. D.83.《九章算术》中有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,问若聘该女子做工半月(15日),一共能织布几尺()A.75 B.85 C.105 D.1204.已知向量,,若,则()A. B. C. D.5.下列平面图形中,通过围绕定直线旋转可得到如图所示几何体的是()A. B. C. D.6.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或97.下列函数中,既是奇函数又是增函数的为()A. B. C. D.8.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.109.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.12.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.13.设函数f(x)是定义在R上的偶函数,且对称轴为x=1,已知当x∈[0,1]时,f(x)=121-x,则有下列结论:①2是函数fx的周期;②函数fx在1,2上递减,在2,3上递增;③函数f14.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.15.在中,角的对边分别为.若,则的值为__________.16.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.18.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?19.已知是等差数列,设数列的前n项和为,且,,又,.(1)求和的通项公式;(2)令,求的前n项和.20.如图,四棱锥中,底面,,,点在线段上,且.(1)求证:平面;(2)若,,,求四棱锥的体积;21.已知函数.(1)求的值及f(x)的对称轴;(2)将的图象向左平移个单位得到函数的图象,求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
试题分析:把函数转化为表示斜率为截距为平行直线系,当截距最大时,最大,由题意知当直线过和两条直线交点时考点:线性规划的应用.【详解】请在此输入详解!2、D【解析】
在上的投影(正射影的数量)为可知,可求出,求的最小值即可得出结果.【详解】因为在上的投影(正射影的数量)为,所以,即,而,所以,因为所以,即,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.3、D【解析】设第一天织尺,第二天起每天比前一天多织尺,由已知得,,故选D.【方法点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系.4、D【解析】
由共线向量的坐标表示可得出关于实数的方程,解出即可.【详解】向量,,且,,解得.故选:D.【点睛】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.5、B【解析】A.是一个圆锥以及一个圆柱;C.是两个圆锥;D.一个圆锥以及一个圆柱;所以选B.6、C【解析】
利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。7、D【解析】
根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.8、A【解析】
利用勾股定理计算出球的半径.【详解】的斜边长为,所以外接圆的半径为,所以球的半径为.故选:A【点睛】本小题主要考查勾股定理计算,考查球的半径有关计算,属于基础题.9、A【解析】
由方程得出直线的截距,逐个选项验证即可.【详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【点睛】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.10、D【解析】
根据任意角三角函数定义可求得;根据诱导公式可将所求式子化为,代入求得结果.【详解】由得:本题正确选项:【点睛】本题考查任意角三角函数值的求解、利用诱导公式化简求值问题;关键是能够通过角的终边上的点求得角的三角函数值.二、填空题:本大题共6小题,每小题5分,共30分。11、③【解析】
利用等比数列的通项公式,解不等式后可得结论.【详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【点睛】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).12、32【解析】
根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.13、①②④【解析】
依据题意作出函数f(x)的图像,通过图像可以判断以下结论是否正确。【详解】作出函数f(x)的图像,由图像可知2是函数fx的周期,函数fx在1,2上递减,在2,3上递增,函数当x∈3,4时,f(x)=f(x-4)=f(4-x)=故正确的结论有①②④。【点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。14、{x|-1<x<-}【解析】
观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【点睛】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.15、1009【解析】
利用余弦定理化简所给等式,再利用正弦定理将边化的关系为角的关系,变形化简即可得出目标比值.【详解】由得,即,所以,故.【点睛】本题综合考查正余弦定理解三角形,属于中档题.16、【解析】
先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)由面面垂直的性质定理得出平面,可得出,再推导出,利用线面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推导出平面,计算出的面积,然后利用锥体体积公式可求得三棱锥的体积,进而得解.【详解】(1)因为四边形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面积为,,平面,所以,平面,,故.【点睛】本题考查面面垂直的证明,同时也考查了利用三棱锥体积求参数,考查推理能力与计算能力,属于中等题.18、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解析】
(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.【点睛】本题主要考查阅读能力及建模能力、等比数列的求和公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19、(1),(2)【解析】
(1)运用数列的递推式,以及等比数列的通项公式可得,是等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】(1)当时,;当时,,且相减可得:故:是公差为d的等差数列,,即为:.(2),前n项和:两式相减可得:化简可得:【点睛】本题考查了数列综合问题,考查了等差等比数列的通项公式,项和转化,乘公比错位相减等知识点,属于较难题.20、(1)证明见解析(2)【解析】
(1)根据底面证得,证得,由此证得平面.(2)利用锥体体积公式,计算出所求锥体体积.【详解】(1)证明:底面,平面,,,,,又,平面,平面,平面.(2),,,∴四边形是矩形,,,又,,,即,.【点睛】本小题主要考查线面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024正规个人房屋租赁合同格式(简单版)
- 街区店铺租赁协议
- 合作事宜协议书模板
- 个人买房协议书
- 2024股份合作协议书合同范本
- 2024竞争性招标合同范文
- 城市更新项目拆除合同
- 工程工具租赁合同
- 2024补偿贸易借款合同标准范本范文
- 专业婚车租赁协议
- 个人开车与单位免责协议书
- 《护理文书书写》课件
- 广东省广州市海珠区2024-2025学年三年级上学期月考英语试卷
- 2023年北京市重点校初三(上)期末历史试题汇编:第一次工业革命
- 《最后一片叶子》课件
- 2024年小轿车买卖合同标准版本(三篇)
- 八年级生物中考备考计划
- 2024-2030年全球及中国湿巾和卫生纸行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 公务员2019年国考《申论》真题及答案(省级)
- 2024年会计专业考试初级会计实务试卷与参考答案
- 职业技术学院材料工程技术专业调研报告
评论
0/150
提交评论