2023-2024学年河南省鹤壁市一中高一下数学期末达标检测模拟试题含解析_第1页
2023-2024学年河南省鹤壁市一中高一下数学期末达标检测模拟试题含解析_第2页
2023-2024学年河南省鹤壁市一中高一下数学期末达标检测模拟试题含解析_第3页
2023-2024学年河南省鹤壁市一中高一下数学期末达标检测模拟试题含解析_第4页
2023-2024学年河南省鹤壁市一中高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省鹤壁市一中高一下数学期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.2.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.63.已知平面向量,,且,则=A. B. C. D.4.若,,则与向量同向的单位向量是()A. B. C. D.5.已知两点,若点是圆上的动点,则面积的最大值为()A.13 B.3 C. D.6.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.7.若,则下列不等式中不正确的是().A. B. C. D.8.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,9.将一边长为2的正方形沿对角线折起,若顶点落在同一个球面上,则该球的表面积为()A. B. C. D.10.函数f(x)=sinA.1 B.2 C.3 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.(理)已知函数,若对恒成立,则的取值范围为.12.已知实数满足,则的最小值为_______.13.已知,则的最小值是_______.14.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=15.已知等差数列的前项和为,若,则_______.16.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四边形是平行四边形,平面平面,,,,,,,为的中点.(1)求证:平面;(2)求证:平面平面.18.已知等差数列满足,且是的等比中项.(1)求数列的通项公式;(2)设,数列的前项和为,求使成立的最大正整数的值.19.已知,(1)求;(2)求;(3)求20.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.21.已知向量且,(1)求向量与的夹角;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.2、D【解析】

根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【点睛】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.3、B【解析】

根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【详解】且,则故故选B.【点睛】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.4、A【解析】

先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标运算,属于基础题5、C【解析】

先求出直线方程,然后计算出圆心到直线的距离,根据面积的最大时,以及高最大的条件,可得结果.【详解】由,利用直线的截距式所以直线方程为:即由圆,即所以圆心为,半径为则圆心到直线的距离为要使面积的最大,则圆上的点到最大距离为所以面积的最大值为故选:C【点睛】本题考查圆与直线的几何关系以及点到直线的距离,属基础题.6、C【解析】

根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.7、D【解析】

先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【点睛】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.8、D【解析】

分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解析】

令正方形对角线与的交点为,如图所示:由正方形中,,则,那么,将正方形沿对角线折起,如图所示:则点为三棱锥的外接球的球心,且半径为,故外接球的表面积为.故选:D【点睛】本题考查了多面体的外接球问题以及球的表面积公式,属于基础题.10、A【解析】

对sin(x+π3【详解】∵f(x)=sin∴f(x)【点睛】考查三角恒等变换、辅助角公式及余弦函数的最值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.12、【解析】

实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【点睛】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.13、3【解析】

根据,将所求等式化为,由基本不等式,当a=b时取到最小,可得最小值。【详解】因为,所以,所以(当且仅当时,等号成立).【点睛】本题考查基本不等式,解题关键是构造不等式,并且要注意取最小值时等号能否成立。14、65π【解析】

本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。15、【解析】

先由题意,得到,求出,再由等差数列的性质,即可得出结果.【详解】因为等差数列的前项和为,若,则,所以,因此.故答案为:【点睛】本题主要考查等差数列的性质的应用,熟记等差数列的求和公式,以及等差数列的性质即可,属于常考题型.16、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)取中点,连接,,利用三角形中位线定理,结合已知,可以证明出四边形为平行四边形,利用平行四边形的性质和线面平行的判定定理可以证明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性质定理,可以得到平面,最后利用面面垂直的判断定理可以证明出平面平面.【详解】(1)取中点,连接,,在中,因为是中点所以且又因为,,所以且,即四边形为平行四边形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,进而由勾股定理的逆定理得又因为平面,平面,又因为平面所以平面又平面,所以平面平面【点睛】本题考查了线面平行、面面垂直的证明,考查了线面平行的判断定理、面面垂直的性质定理和判定定理,考查了推理论证能力.18、(1)(2)8【解析】

(1)设等差数列的公差为,根据题意列出有关和的方程组,可解出和的值,从而可求出数列的通项公式;(2)先得出,利用裂项法求出数列的前项和,然后解不等式,可得出的取值范围,于此可得出的最大值.【详解】(1)设等差数列的公差为,,即,∴,是,的等比中项,∴,即,解得.∴数列的通项公式为;(2)由(1)得∴.由,得,∴使得成立的最大正整数的值为8.【点睛】本题考查等差数列的通项公式,考查裂项求和法,解等差数列的通项公式,一般是利用方程思想求出等差数列的首项和公差,利用这两个基本两求出等差数列的通项公式,考查运算求解能力,属于中等题.19、(1);(2);(3)【解析】

利用正弦的二倍角公式,余弦和正切的两角和公式计算即可得到答案.【详解】因为,,所以.(1);(2);(3)【点睛】本题考查正弦的二倍角公式,余弦和正切的两角和公式的应用,属于简单题.20、或【解析】分析:(1)由与共线,可设,又由为单位向量,根据,列出方程即可求得向量的坐标;(2)根据向量的夹角公式,即可求解向量与的夹角.详解:与共线,又,则,为单位向量,,或,则的坐标为或,,.点睛:对于平面向量的运算问题,通常用到:1、平面向量与的数量积为,其中是与的夹角,要注意夹角的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论