2023-2024学年湖南省邵东县一中高一下数学期末质量跟踪监视试题含解析_第1页
2023-2024学年湖南省邵东县一中高一下数学期末质量跟踪监视试题含解析_第2页
2023-2024学年湖南省邵东县一中高一下数学期末质量跟踪监视试题含解析_第3页
2023-2024学年湖南省邵东县一中高一下数学期末质量跟踪监视试题含解析_第4页
2023-2024学年湖南省邵东县一中高一下数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省邵东县一中高一下数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若向量,则A. B. C. D.2.设数列是公差不为零的等差数列,它的前项和为,且、、成等比数列,则等于()A. B. C. D.3.在中,内角所对的边分别为,若,且,则的形状是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.不确定4.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形5.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定6.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的()倍.A.95 B.2 C.527.的内角的对边分别是,若,,,则()A. B. C. D.8.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.9.若向量,且,则等于()A. B. C. D.10.已知数列满足,,,则的值为()A.12 B.15 C.39 D.42二、填空题:本大题共6小题,每小题5分,共30分。11.已知,为单位向量,且,若向量满足,则的最小值为_____.12.已知数列满足:(),设的前项和为,则______;13.若是等比数列,,,则________14.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.15.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.16.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正项数列的前项和为,且.(Ⅰ)试求数列的通项公式;(Ⅱ)设,求的前项和为.(Ⅲ)在(Ⅱ)的条件下,若对一切恒成立,求实数的取值范围.18.如图,已知函数,点分别是的图像与轴、轴的交点,分别是的图像上横坐标为的两点,轴,共线.(1)求的值;(2)若关于的方程在区间上恰有唯一实根,求实数的取值范围.19.已知所在平面内一点,满足:的中点为,的中点为,的中点为.设,,如图,试用,表示向量.20.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?参考公式:回归直线的方程,其中,.21.如图,是平行四边形,平面,,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据向量的坐标运算法则,可直接得出结果.【详解】因为,所以.故选B【点睛】本题主要考查向量的坐标运算,熟记运算法则即可,属于基础题型.2、A【解析】

设等差数列的公差为,根据得出与的等量关系,即可计算出的值.【详解】设等差数列的公差为,由于、、成等比数列,则有,所以,,化简得,因此,.故选:A.【点睛】本题考查等差数列前项和中基本量的计算,解题的关键就是结合题意得出首项与公差的等量关系,考查计算能力,属于基础题.3、C【解析】

通过正弦定理可得可得三角形为等腰,再由可知三角形是直角,于是得到答案.【详解】因为,所以,所以,即.因为,所以,又因为,所以,所以,故的形状是等腰直角三角形.【点睛】本题主要考查利用正弦定理判断三角形形状,意在考查学生的分析能力,计算能力,难度中等.4、A【解析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.5、B【解析】

利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.6、D【解析】

设最小球的半径为R,根据比例关系即可得到另外两个球的半径,再利用球的体积公式表示出三个球的体积,即可得到结论。【详解】设最小球的半径为R,由三个球的半径的比是1:2:3,可得另外两个球的半径分别为2R,3R;∴最小球的体积V1=43π∴V故答案选D【点睛】本题主要考查球体积的计算公式,属于基础题。7、B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.8、B【解析】

△OAB为锐角三角形等价于,再运算即可得解.【详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【点睛】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.9、B【解析】

根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.10、B【解析】

根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

由题意设,,,由得出,它表示圆,由,利用向量的模的几何意义从而得到最小值.【详解】由题意设,,,因,即,所以,它表示圆心为,半径的圆,又,所以,而表示圆上的点与点的距离的平方,由,所以,故的最小值为.故答案为:.【点睛】本题考查了平面向量的数量积与应用问题,也考查了圆的方程与应用问题,属于中档题.12、130【解析】

先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【点睛】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.13、【解析】

根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.14、或【解析】

利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.15、②③④【解析】

首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.16、【解析】

根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)将所给条件式子两边同时平方,利用递推法可得的表达式,由两式相减,变形即可证明数列为等差数列,进而结合首项与公差求得的通项公式.(Ⅱ)由(Ⅰ)中可求得.将与代入即可求得数列的通项公式,利用裂项法即可求得前项和.(Ⅲ)先求得的取值范围,结合不等式,即可求得的取值范围.【详解】(Ⅰ)因为正项数列的前项和为,且化简可得由递推公式可得两式相减可得,变形可得即,由正项等比数列可得所以而当时,解得所以数列是以为首项,以为公差的等差数列因而(Ⅱ)由(Ⅰ)可知则代入中可得所以(Ⅲ)由(Ⅱ)可知则,所以数列为单调递增数列,则且当时,,即所以因为对一切的恒成立则满足,解不等式组可得即实数的取值范围为【点睛】本题考查了等差数列通项公式与求和公式的应用,裂项求和法的应用,数列的单调性与不等式关系,综合性强,属于中档题.18、(Ⅰ),(Ⅱ)或【解析】试题分析:解:(Ⅰ)建立,.(Ⅱ),结合图象可知或.试题解析:解:(Ⅰ)①②解得,.(Ⅱ),,因为时,,由方程恰有唯一实根,结合图象可知或.19、【解析】

由为的中点,则可得,为的中点,则可得,从中可以求出向量,得到答案.【详解】由为的中点,则可得.又为的中点,所以【点睛】本题考查向量的基本定理和向量的加减法的法则,属于中档题.20、(1)(2)该协会所得线性回归方程是理想的【解析】试题分析:(1)根据所给的数据求出x,y的平均数,根据求线性回归系数的方法,求出系数,把和,代入公式,求出的值,写出线性回归方程;(2)根据所求的线性回归方程,预报当自变量为10和6时的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到线性回归方程理想.试题解析:解:(Ⅰ)由数据求得,,,由公式求得,所以,所以关于的线性回归方程为.(Ⅱ)当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.点睛:求线性回归方程的步骤:(1)先把数据制成表,从表中计算出的值;(2)计算回归系数;(3)写出线性回归方程.进行线性回归分析时,要先画出散点图确定两变量具有线性相关关系,然后利用公式求回归系数,得到回归直线方程,最后再进行有关的线性分析.21、(1)见解析;(2).【解析】

(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论