新疆克拉玛依市第十三中学2023-2024学年高一数学第二学期期末检测模拟试题含解析_第1页
新疆克拉玛依市第十三中学2023-2024学年高一数学第二学期期末检测模拟试题含解析_第2页
新疆克拉玛依市第十三中学2023-2024学年高一数学第二学期期末检测模拟试题含解析_第3页
新疆克拉玛依市第十三中学2023-2024学年高一数学第二学期期末检测模拟试题含解析_第4页
新疆克拉玛依市第十三中学2023-2024学年高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆克拉玛依市第十三中学2023-2024学年高一数学第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的通项公式为,若数列单调递增,则的取值范围为A. B. C. D.2.已知关于的不等式的解集为空集,则实数的取值范围是()A. B. C. D.3.已知,,,若,则等于()A. B. C. D.4.把等差数列1,3,5,7,9,…依次分组,按第一个括号一个数,第二个括号二个数,第三个括号三个数,第四个括号一个数,…循环分为,,,,,,,…,则第11个括号内的各数之和为()A.99 B.37 C.135 D.805.等差数列中,已知,则()A.1 B.2 C.3 D.46.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面7.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.58.过点斜率为-3的直线的一般式方程为()A. B.C. D.9.已知等比数列中,,且有,则()A. B. C. D.10.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.12.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.13.已知,则__________.14.已知向量,则________15.已知,则的最小值为__________.16.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.(1)求证:直线平面;(2)求直线与平面所成角的余弦值;(3)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.18.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.19.已知函数的图象过点.(1)求的值;(2)判断的奇偶性并证明.20.已知函数(1)解关于的不等式;(2)若,令,求函数的最小值.21.已知直线截圆所得的弦长为.直线的方程为.(1)求圆的方程;(2)若直线过定点,点在圆上,且,为线段的中点,求点的轨迹方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化简解出即可得出.【详解】数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n1+n.∴a<1.故选C.【点睛】本题考查了等比数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.2、C【解析】

由题意得出关于的不等式的解集为,由此得出或,在成立时求出实数的值代入不等式进行验证,由此解不等式可得出实数的取值范围.【详解】由题意知,关于的不等式的解集为.(1)当,即.当时,不等式化为,合乎题意;当时,不等式化为,即,其解集不为,不合乎题意;(2)当,即时.关于的不等式的解集为.,解得.综上可得,实数的取值范围是.故选:C.【点睛】本题考查二次不等式在上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.3、A【解析】

根据向量的坐标运算法则,依据题意列出等式求解.【详解】由题知:,,,因为,所以,故,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.4、D【解析】

由已知分析,寻找数据的规律,找出第11个括号的所有数据即可.【详解】因为每三个括号,总共有数据1+2+3=6个,相当于一个“周期”,故第11个括号,在第4个周期的第二个括号;则第11个括号中有两个数,其数值为首项为1,公差为2的等差数列数列中的第20项(6,第21项的和,即.故选:D.【点睛】本题考查数列新定义问题,涉及归纳总结,属中档题.5、B【解析】

已知等差数列中一个独立条件,考虑利用等差中项求解.【详解】因为为等差数列,所以,由,,故选B.【点睛】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.6、D【解析】

利用定理及特例法逐一判断即可。【详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【点睛】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。7、D【解析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.8、A【解析】

由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.9、A【解析】,,所以选A10、B【解析】试题分析:由题意得,执行上式的循环结构,第一次循环:;第二次循环:;第三次循环:;,第次循环:,此时终止循环,输出结果,所以判断框中,添加,故选B.考点:程序框图.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【详解】.故答案为:2【点睛】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.12、【解析】

根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.13、【解析】

对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【详解】因为,所以,即,所以.【点睛】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.14、2【解析】

由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.15、【解析】

根据均值不等式即可求出的最小值.【详解】因为所以,根据均值不等式可得:当且仅当,即时等号成立.【点睛】本题主要考查了均值不等式,属于中档题.16、①②【解析】

根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)存在点,使,详见解析【解析】

(1)设与的交点为,证明进而证明直线平面.(2)先证明直线与平面所成角的为,再利用长度关系计算.(3)过点作,证明平面,即,所以存在.【详解】(1)设与的交点为,显然为中点,又点为线段的中点,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,点在平面上的投影为点,直线与平面所成角的为,,,,.(3)过点作,又因为平面,平面,所以,平面,平面,平面,,所以存在点,使.【点睛】本题考查了立体几何线面平行,线面夹角,动点问题,将线线垂直转化为线面垂直是解题的关键.18、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.19、(1),(2)奇函数,证明见解析【解析】

(1)将代入解析式,解方程即可.【详解】(1)由题知:,解得.(2).,定义域为:.,.所以,所以为奇函数.【点睛】本题第一问考查对数的运算,第二问考查函数奇偶的判断,属于中档题.20、(1)答案不唯一,具体见解析(2)【解析】

(1)讨论的范围,分情况得的三个答案.(2)时,写出表达式,利用均值不等式得到最小值.【详解】(1)①当时,不等式的解集为,②当时,不等式的解集为,③当时,不等式的解集为(2)若时,令(当且仅当,即时取等号).故函数的最小值为.【点睛】本题考查了解不等式,均值不等式,函数的最小值,意在考查学生的综合应用能力.21、(1);(2).【解析】

(1)利用点到直线的距离公式得到圆心到直线的距离,利用直线截圆得到的弦长公式可得半径r,从而得到圆的方程;(2)由已知可得直线l1恒过定点P(1,1),设MN的中点Q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论