湖北省孝感市高级中学2024届数学高一下期末质量跟踪监视模拟试题含解析_第1页
湖北省孝感市高级中学2024届数学高一下期末质量跟踪监视模拟试题含解析_第2页
湖北省孝感市高级中学2024届数学高一下期末质量跟踪监视模拟试题含解析_第3页
湖北省孝感市高级中学2024届数学高一下期末质量跟踪监视模拟试题含解析_第4页
湖北省孝感市高级中学2024届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市高级中学2024届数学高一下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象可能是().A. B. C. D.2.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.243.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或4.如图,正方形的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是()cm.A.12 B.16 C. D.5.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.6.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.107.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.28.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)9.直线的斜率为()A. B. C. D.10.在中,分别为角的对边,若的面积为,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已有无穷等比数列的各项的和为1,则的取值范围为__________.12.设y=f(x)是定义域为R的偶函数,且它的图象关于点(2,0)对称,若当x∈(0,2)时,f(x)=x2,则f(19)=_____13.公比为2的等比数列的各项都是正数,且,则的值为___________14.已知数列中,,,则数列通项___________15.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.16.在中,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的周期,且满足,求及的递增区间;(2)若,在上的最小值为,求的最小值.18.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.19.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.20.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.21.已知数列是等差数列,数列是等比数列,且,记数列的前项和为,数列的前项和为.(1)若,求序数的值;(2)若数列的公差,求数列的公比及.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.2、C【解析】

根据等差数列的前n项和公式,即可求出.【详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【点睛】本题主要考查了等差数列的前n项和公式,属于中档题.3、D【解析】

作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.4、B【解析】

根据直观图与原图形的关系,可知原图形为平行四边形,结合线段关系即可求解.【详解】根据直观图,可知原图形为平行四边形,因为正方形的边长为2cm,所以原图形cm,,则,所以原平面图形的周长为,故选:B.【点睛】本题考查了平面图形直观图与原图形的关系,由直观图求原图形面积方法,属于基础题.5、B【解析】

根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.6、A【解析】

将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。7、B【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、D【解析】

直接利用向量的坐标运算法则化简求解即可.【详解】解:向量a=(3,2),b则向量2b-故选D.【点睛】本题考查向量的坐标运算,考查计算能力.9、A【解析】

化直线方程为斜截式求解.【详解】直线可化为,∴直线的斜率是,故选:A.【点睛】本题考查直线方程,将一般方程转化为斜截式方程即可得直线的斜率,属于基础题.10、B【解析】试题分析:由已知条件及三角形面积计算公式得由余弦定理得考点:考查三角形面积计算公式及余弦定理.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.12、﹣1.【解析】

根据题意,由函数的奇偶性与对称性分析可得,即函数是周期为的周期函数,据此可得,再由函数的解析式计算即可.【详解】根据题意,是定义域为的偶函数,则,又由得图象关于点对称,则,所以,即函数是周期为的周期函数,所以,又当时,,则,所以.故答案为:.【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.13、2【解析】

根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.14、【解析】分析:在已知递推式两边同除以,可得新数列是等差数列,从而由等差数列通项公式求得,再得.详解:∵,∴两边除以得,,即,∵,∴,∴是以为首项,以为公差的等差数列,∴,∴.故答案为.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握.15、【解析】

由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【点睛】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.16、【解析】

由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)2.【解析】

(1)由函数的性质知,关于直线对称,又函数的周期,两个条件两个未知数,列两个方程,所以可以求出,进而得到的解析式,求出的递增区间;(2)求出的所有解,再解不等式,即可求出的最小值.【详解】(1),由知,∴对称轴∴,又,,由,得,函数递增区间为;(2)由于,在上的最小值为,所以,即,所以,所以.【点睛】本题主要考查三角函数解析式、单调区间以及最值的求法,特别注意用代入法求单调区间时,要考虑复合函数的单调性,以免求错.18、(1);(2).【解析】

(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【点睛】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.19、(1)(2)3【解析】

(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【点睛】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.20、(1)(2)最小正周期,的单调递增区间为:.【解析】

(1)计算平面向量的数量积得出函数的解析式,求出时的值;(2)根据的解析式,求出它的最小正周期T及单调递增区间.【详解】函数时,,解得又;(2)函数它的最小正周期:令故:的单调递增区间为:【点睛】本题考查了正弦型函数的性质,考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论