四川省德阳市高中2025届数学高一下期末达标检测模拟试题含解析_第1页
四川省德阳市高中2025届数学高一下期末达标检测模拟试题含解析_第2页
四川省德阳市高中2025届数学高一下期末达标检测模拟试题含解析_第3页
四川省德阳市高中2025届数学高一下期末达标检测模拟试题含解析_第4页
四川省德阳市高中2025届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省德阳市高中2025届数学高一下期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在角的终边上,函数图象上与轴最近的两个对称中心间的距离为,则的值为()A. B. C. D.2.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.3.袋中有个大小相同的小球,其中个白球,个红球,个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为()A. B. C. D.4.已知等差数列的首项,公差,则()A.5 B.7 C.9 D.115.设有直线和平面,则下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α6.角的终边过点,则等于()A. B. C. D.7.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}8.是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数9.若直线上存在点满足则实数的最大值为A. B. C. D.10.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,则____________.12.设是等差数列的前项和,若,,则公差(___).13.在空间直角坐标系中,三棱锥的各顶点都在一个半径为的球面上,为球心,,,,,则球的体积与三棱锥的体积之比是_____.14.已知函数,对于下列说法:①要得到的图象,只需将的图象向左平移个单位长度即可;②的图象关于直线对称:③在内的单调递减区间为;④为奇函数.则上述说法正确的是________(填入所有正确说法的序号).15.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.16.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在直三棱柱中,,平面,D为AC的中点.(1)求证:平面;(2)求证:平面;(3)设E是上一点,试确定E的位置使平面平面BDE,并说明理由.18.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。19.设函数.(1)求函数的最小正周期.(2)求函数的单调递减区间;(3)设为的三个内角,若,,且为锐角,求.20.已知无穷数列,是公差分别为、的等差数列,记(),其中表示不超过的最大整数,即.(1)直接写出数列,的前4项,使得数列的前4项为:2,3,4,5;(2)若,求数列的前项的和;(3)求证:数列为等差数列的必要非充分条件是.21.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意,则,即,则;又由三角函数的定义可得,则,应选答案C.2、D【解析】

分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.3、D【解析】

利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为,因此,取出的球恰好是红色或者黑色小球的概率为,故选D.【点睛】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.4、C【解析】

直接利用等差数列的通项公式,即可得到本题答案.【详解】由为等差数列,且首项,公差,得.故选:C【点睛】本题主要考查利用等差数列的通项公式求值,属基础题.5、D【解析】

在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.6、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.7、A【解析】

根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【点睛】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.8、A【解析】

将函数化为的形式后再进行判断便可得到结论.【详解】由题意得,∵,且函数的最小正周期为,∴函数时最小正周期为的偶函数.故选A.【点睛】判断函数最小正周期时,需要把函数的解析式化为或的形式,然后利用公式求解即可得到周期.9、B【解析】

首先画出可行域,然后结合交点坐标平移直线即可确定实数m的最大值.【详解】不等式组表示的平面区域如下图所示,由,得:,即C点坐标为(-1,-2),平移直线x=m,移到C点或C点的左边时,直线上存在点在平面区域内,所以,m≤-1,即实数的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.10、A【解析】

由题意利用函数的图象变换法则,即可得出结论。【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【点睛】本题主要考查函数的图象变换法则,注意对的影响。二、填空题:本大题共6小题,每小题5分,共30分。11、84【解析】

根据余弦定理以及同角公式求得,再根据面积公式可得答案.【详解】由余弦定理可得,又,所以,所以.故答案为:84【点睛】本题考查了余弦定理,考查了同角公式,考查了三角形的面积公式,属于基础题.12、【解析】

根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.13、【解析】

首先根据坐标求出三棱锥的体积,再计算出球的体积即可.【详解】有题知建立空间直角坐标系,如图所示由图知:平面,...故答案为:【点睛】本题主要考查三棱锥的外接球,根据题意建立空间直角坐标系为解题的关键,属于中档题.14、②④【解析】

结合三角函数的图象与性质对四个结论逐个分析即可得出答案.【详解】①要得到的图象,应将的图象向左平移个单位长度,所以①错误;②令,,解得,,所以直线是的一条对称轴,故②正确;③令,,解得,,因为,所以在定义域内的单调递减区间为和,所以③错误;④是奇函数,所以该说法正确.【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对的图象与性质的掌握,属于中档题.15、.【解析】

连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.16、.【解析】

由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【点睛】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见详解,(2)证明见详解,(3)当为的中点时,平面平面BDE,证明见详解【解析】

(1)连接与相交于,可得,结合线面平行的判定定理即可证明平面(2)先证明和即可得出平面,然后可得,又,即可证明平面(3)当为的中点时,平面平面BDE,由已知易得,结合平面可得平面,进而根据面面垂直的判定定理得到结论.【详解】(1)如图,连接与相交于,则为的中点连接,又为的中点所以,又平面,平面所以平面(2)因为,所以四边形为正方形所以又因为平面,平面所以所以平面,所以又在直三棱柱中,所以平面(3)当为的中点时,平面平面BDE因为分别是的中点所以,因为平面所以平面,又平面所以平面平面BDE【点睛】本题考查的是立体几何中线面平行和垂直的证明,要求我们要熟悉并掌握平行与垂直有关的判定定理和性质定理,在证明的过程中要注意步骤的完整.18、(1)(2)使的面积等于4的点有2个【解析】

(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上式对任意恒成立,所以,且,解得或(舍去,与重合)。所以点,则,直线方程为,点到直线的距离,若存在点使的面积等于4,则,∴。①当点在直线的上方时,点到直线的距离的取值范围为,∵,∴当点在直线的上方时,使的面积等于4的点有2个;②当点在直线的下方时,点到直线的距离的取值范围为,∵,∴当点在直线的下方时,使的面积等于4的点有0个,综上可知,使的面积等于4的点有2个。【点睛】本题考查圆的方程,直线与圆的位置关系,圆的第二定义,考查运算能力,分析问题解决问题的能力,属于难题.19、(1)(2)减区间为,(3)【解析】

利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.利用正弦函数的单调性,求得函数的单调递减区间.利用同角三角函数的基本关系、两角和的正弦公式,求得的值.【详解】函数,故它的最小正周期为.对于函数,令,求得,可得它的减区间为,.中,若,.若,,为锐角,..【点睛】本题主要考查三角恒等变换,正弦函数的周期性和单调性,考查了同角三角函数的基本关系、两角和的正弦公式的应用,属于中档题.20、(1)的前4项为1,2,3,4,的前4项为1,1,1,1;(2);(3)证明见解析【解析】

(1)根据定义,选择,的前4项,尽量选用整数计算方便;(2)分别考虑,的前项的规律,然后根据计算的运算规律计算;(3)根据必要不充分条件的推出情况去证明即可.【详解】(1)由的前4项为:2,3,4,5,选、的前项为正整数:的前4项为1,2,3,4,的前4项为1,1,1,1;(2)将的前项列举出:;将的前项列举出:;则;(3)充分性:取,此时,将的前项列举出:,将前项列出:,此时的前项为:,显然不是等差数列,充分性不满足;必要性:设,,当为等差数列时,因为,所以,又因为,所以有:,且,所以;,,不妨令,则有如下不等式:;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论