福建省华安一中2025届数学高一下期末调研试题含解析_第1页
福建省华安一中2025届数学高一下期末调研试题含解析_第2页
福建省华安一中2025届数学高一下期末调研试题含解析_第3页
福建省华安一中2025届数学高一下期末调研试题含解析_第4页
福建省华安一中2025届数学高一下期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省华安一中2025届数学高一下期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或32.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶3.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.4.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.5.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.646.已知且,则为()A. B. C. D.7.已知非零向量与的夹角为,且,则()A.1 B.2 C. D.8.实数数列为等比数列,则()A.-2 B.2 C. D.9.设△ABC的内角A,B,C所对的边分别为a,b,c,若,则的形状一定是()A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形10.用数学归纳法证明不等式的过程中,由递推到时,不等式左边()A.增加了一项B.增加了两项,C.增加了A中的一项,但又减少了另一项D.增加了B中的两项,但又减少了另一项二、填空题:本大题共6小题,每小题5分,共30分。11.若满足约束条件,的最小值为,则________.12.函数的值域是________.13.已知圆截直线所得线段的长度是,则圆M与圆的位置关系是_________.14.已知,则_________.15.设等比数列的公比,前项和为,则.16.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值;(2)若为第二象限角,且角终边在上,求的值.18.在中,内角,,的对边分别为,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面积为,求的值.19.已知函数.(1)求函数的单调减区间.(2)求函数的最大值并求取得最大值时的的取值集合.(3)若,求的值.20.若关于的不等式对一切实数都成立,求实数的取值范围.21.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.2、A【解析】

利用对立事件、互斥事件的定义直接求解.【详解】一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.【点睛】本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.3、D【解析】

运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.4、D【解析】

由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.5、A【解析】

分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.6、B【解析】由题意得,因为,即,所以,又,又,且,所以,故选B.7、B【解析】

根据条件可求出,从而对两边平方即可得出,解出即可.【详解】向量与的夹角为,且;;;;或0(舍去);.故选:.【点睛】本题主要考查了向量数量积的定义及数量积的运算公式,属于中档题.8、B【解析】

由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.9、C【解析】

将角C用角A角B表示出来,和差公式化简得到答案.【详解】△ABC的内角A,B,C所对的边分别为a,b,c,角A,B,C为△ABC的内角故答案选C【点睛】本题考查了三角函数和差公式,意在考查学生的计算能力.10、D【解析】

根据题意,分别写出和时,左边对应的式子,进而可得出结果.【详解】当时,左边,当时,左边,所以,由递推到时,不等式左边增加了,;减少了;故选:D【点睛】本题主要考查数学归纳法的应用,熟记数学归纳法,会求增量即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【点睛】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.12、【解析】

求出函数在上的值域,根据原函数与反函数的关系即可求解.【详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【点睛】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.13、相交【解析】

根据直线与圆相交的弦长公式,求出的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为,则圆心为,半径,圆心到直线的距离,圆截直线所得线段的长度是,即,,则圆心为,半径,圆的圆心为,半径,则,,,,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出的值是解决本题的关键.14、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在.15、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.16、4【解析】

直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先根据诱导公式将原式子化简,再将已知条件中的表达式平方,可得到结果;(2)原式子可化简为,由已知条件可得到,再由第一问中得到,结合第一问中的条件可得到结果.【详解】(1)=已知,将式子两边平方可得到(2)为第二象限角,且角终边在上,则根据三角函数的定义得到原式化简等于由第一问得到将已知条件均代入可得到原式等于.【点睛】三角函数求值与化简必会的三种方法(1)弦切互化法:主要利用公式tanα=;形如,asin2x+bsinxcosx+ccos2x等类型可进行弦化切.(2)“1”的灵活代换法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等.(3)和积转换法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的关系进行变形、转化.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用,化简得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面积公式得,得到,再利用,即可求解.【详解】(Ⅰ)由题意知,即,由正弦定理,得,①,由余弦定理,得,又因为,所以.(Ⅱ)因为,,由面积公式得,即.由①得,故,即.【点睛】本题考查正弦和余弦定理的应用,属于基础题.19、(1).(2)最大值是2,取得最大值时的的取值集合是.(3)【解析】

(1)利用三角恒等变换化简的解析式,再利用正弦函数的单调性,求得函数的单调区间;(2)根据的解析式以及正弦函数的最值,求得函数的最大值,以及取得最大值时的的取值集合;(3)根据题设条件求得,再利用二倍角的余弦公式求的值.【详解】(1),令,解得,所以的单调递减区间为;(2)由(1)知,故的最大值为2,此时,,解得,所以的最大值是2,取得最大值时的的取值集合是;(3),即,所以,所以.【点睛】本题主要考查三角函数的恒等变换,考查正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质是答题关键,属于中档题.20、【解析】

对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【点睛】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.21、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解析】

(Ⅰ)利用方差的公式,求得S2A>S2B,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论