版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省抚宁一中高一数学第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若满足约束条件,则的最小值是()A.0 B. C. D.32.点,,直线与线段相交,则实数的取值范围是()A. B.或C. D.或3.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-4.已知直线:,:,:,若且,则的值为A. B.10 C. D.25.已知函数在区间上至少取得2次最大值,则正整数t的最小值是()A.6 B.7 C.8 D.96.圆锥的母线长为,侧面展开图为一个半圆,则该圆锥表面积为()A. B. C. D.7.如果全集,,则()A. B. C. D.8.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行9.已知向量,且,则()A. B. C. D.10.设等差数列的前项的和为,若,,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,且,则___________.12.在圆心为,半径为的圆内接中,角,,的对边分别为,,,且,则的面积为__________.13.圆与圆的公共弦长为______________。14.两圆交于点和,两圆的圆心都在直线上,则____________;15.若函数,则__________.16.若数据的平均数为,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,其中,,且函数在处取得最大值.(1)求的最小值,并求出此时函数的解析式和最小正周期;(2)在(1)的条件下,先将的图像上的所有点向右平移个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移个单位,得到函数的图像.若在区间上,方程有两个不相等的实数根,求实数a的取值范围;(3)在(1)的条件下,已知点P是函数图像上的任意一点,点Q为函数图像上的一点,点,且满足,求的解集.18.设函数.(1)求不等式的解集;(2)若对于,恒成立,求的取值范围.19.习主席说:“绿水青山就是金山银山”.某地相应号召,投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2018年投入1000万元,以后每年投入将比上一年减少,本年度当地旅游业收入估计为500万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加.(1)设年内(2018年为第一年)总投入为万元,旅游业总收入为万元,写出、的表达式;(2)至少到哪一年,旅游业的总收入才能超过总投入.(参考数据:,,)20.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.21.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】可行域为一个三角形及其内部,其中,所以直线过点时取最小值,选B.2、B【解析】
根据,在直线异侧或其中一点在直线上列不等式求解即可.【详解】因为直线与线段相交,所以,,在直线异侧或其中一点在直线上,所以,解得或,故选B.【点睛】本题主要考查点与直线的位置关系,考查了一元二次不等式的解法,属于基础题.3、D【解析】
利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.4、C【解析】
由且,列出方程,求得,,解得的值,即可求解.【详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选C.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题.5、C【解析】
先根据三角函数的性质可推断出函数的最小正周期为6,进而推断出,进而求得t的范围,进而求得t的最小值.【详解】函数的周期T=6,则,∴,∴正整数t的最小值是8.故选:C.【点睛】本题主要考查三角函数的周期性以及正弦函数的简单性质,属于基础题.6、B【解析】
由圆锥展开图为半径为的半圆,得出其弧长等于圆锥的底面圆周长,可得出圆锥底面圆的半径,然后利用圆锥的表面积公式可计算出圆锥的表面积.【详解】一个圆锥的母线长为,它的侧面展开图为半圆,半圆的弧长为,即圆锥的底面周长为,设圆锥的底面半径是,则得到,解得,这个圆锥的底面半径是,圆锥的表面积为.故选:B.【点睛】本题考查圆锥表面积的计算,计算时要结合已知条件列等式计算出圆锥的相关几何量,考查运算求解能力,属于中等题.7、C【解析】
首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.8、D【解析】
利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.9、A【解析】
直接利用向量平行的充要条件列方程求解即可.【详解】由可得到.故选A【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.10、C【解析】,,,,,,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).12、【解析】
已知条件中含有这一表达式,可以联想到余弦定理进行条件替换;利用同弧所对圆心角为圆周角的两倍,先求出角的三角函数值,再求的正弦值,进而即可得解.【详解】,,在中,代入(1)式得:,整理得:圆周角等于圆心角的两倍,,(1)当时,,,.(1)当时,,点在的外面,此时,,.【点睛】本题对考生的计算能力要求较高,对解三角形和平面几何知识进行综合考查.13、【解析】
利用两圆一般方程求两圆公共弦方程,求其中一圆到公共弦的距离,利用直线被圆截得的弦长公式可得所求.【详解】由两圆方程相减得两圆公共弦方程为,即,圆化为,圆心到直线的距离为1,所以两圆公共弦长为,故答案为.【点睛】本题考查两圆位置关系,直线与圆的位置关系,考查运算能力,属于基本题.14、【解析】
由圆的性质可知,直线与直线垂直,,直线的斜率,,解得.故填:3.【点睛】本题考查了相交圆的几何性质,和直线垂直的关系,考查数形结合的思想与计算能力,属于基础题.15、【解析】
根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.16、【解析】
根据求平均数的公式,得到关于的方程,求得.【详解】由题意得:,解得:,故填:.【点睛】本题考查求一组数据的平均数,考查基本数据处理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的最小值为1,,,(2)(3)原不等式的解集为【解析】
(1)先将化成正弦型,然后利用在处取得最大值求出,然后即可得到的解析式和周期(2)先根据图象的变换得到,然后画出在区间上的图象,条件转化为的图象与直线有两个交点即可(3)利用坐标的对应关系式,求出的函数的关系式,进一步利用三角不等式的应用求出结果.【详解】(1)因为,所以因为在处取得最大值.所以,即当时的最小值为1此时,(2)将的图像上的所有的点向右平移个单位得到的函数为,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为,然后将所得图像上所有的点向下平移个单位,得到函数在区间上的图象为:方程有两个不相等的实数根等价于的图象与直线有两个交点所以,解得(3)设,因为点,且满足所以,所以因为点为函数图像上的一点所以即因为,所以所以所以所以原不等式的解集为【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.18、(1)见解析;(2).【解析】
(1)由得,然后分、、三种情况来解不等式;(2)由恒成立,由参变量分离法得出,并利用基本不等式求出在上的最小值,即可得出实数的取值范围.【详解】(1),,.当时,不等式的解集为;当时,原不等式为,该不等式的解集为;当时,不等式的解集为;(2)由题意,当时,恒成立,即时,恒成立.由基本不等式得,当且仅当时,等号成立,所以,,因此,实数的取值范围是.【点睛】本题考查含参二次不等式的解法,同时也考查了利用二次不等式恒成立求参数的取值范围,在含单参数的二次不等式恒成立问题时,可充分利用参变量分离法,转化为函数的最值来求解,可避免分类讨论,考查化归与转化思想的应用,属于中等题.19、(1),;(2)2022年【解析】
(1)根据题意,知每年投入资金和旅游业收入是等比数列,根据等比数列的前n项和公式,即可求解;(2)根据(1)中解析式,列出不等式,令,化简不等式,即可求解.【详解】解:(1)2018年投入为1000万元,第年投入为万元,所以,年内的总投入为.2018年旅游业收入为500万元,第年旅游业收入为万元,所以,年内的旅游业总收入为.(2)设至少经讨年,旅游业的总收入才能超讨总投入,由此得,即,令,代入上式得,解得或(舍去),即,不等式两边取常用对数,,即.∴∴至少到2022年,旅游业的总收入才能超过总投入.【点睛】本题考查等比数列求和公式,转化法解指数不等式,考查数学建模思想方法,考查计算能力,属于中等题型.20、(1),;(2)【解析】
(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;(2)∵,,∴∴∴,∴.【点睛】本题考查已知求的通项公式以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国威士忌市场销售渠道与营销趋势预测报告
- 2024年独家:影视作品版权许可使用协议
- 2024年特许经营合同实务操作
- 2024年版企业间技术咨询合同
- 茅台学院《公共关系案例精讲》2023-2024学年第一学期期末试卷
- 2024年智能监控系统设备安装协议版B版
- 2024年度内河化学品运输安全责任合同模板下载3篇
- 2024年生态农业自建房产权转移协议3篇
- 2025废品回收合同
- 2024年标准电脑维修服务承诺合同范本版B版
- 2023年正规借条免费下载(5篇)
- 网络创业智慧树知到答案章节测试2023年海南经贸职业技术学院
- 高中英语新课标新增词汇汇总1
- GB/T 31586.2-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第2部分:划格试验和划叉试验
- GB/T 20734-2006液化天然气汽车专用装置安装要求
- GB/T 20197-2006降解塑料的定义、分类、标志和降解性能要求
- GB/T 15561-2008静态电子轨道衡
- 军事理论论述题
- 宁德时代财务报表分析
- 门式起重机安装施工方案
- 高中语文语法知识课件
评论
0/150
提交评论