版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳县江山中英文学校2024届数学高一下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.2.点关于直线的对称点的坐标为()A. B. C. D.3.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°4.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.5.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等6.下列结论:①;②;③,;④,,其中正确结论的个数是().A.1 B.2 C.3 D.47.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本8.已知函数,若实数满足,则的取值范围是()A. B. C. D.9.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.10.函数图像的一个对称中心是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列的前项和为满足:,则_________.12.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.13.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.14.已知圆锥如图所示,底面半径为,母线长为,则此圆锥的外接球的表面积为___.15.已知当时,函数(且)取得最小值,则时,的值为__________.16.等比数列的首项为,公比为,记,则数列的最大项是第___________项.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量与向量垂直,求;(2)若与夹角为锐角,求的取值范围.18.已知函数(1)求函数的最小正周期;(2)若,且,求的值.19.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.20.在中,(Ⅰ)求;(Ⅱ)若,,求的值21.如图,某快递小哥从地出发,沿小路以平均速度为20公里小时送快件到处,已知公里,,是等腰三角形,.(1)试问,快递小哥能否在50分钟内将快件送到处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路追赶,若汽车的平均速度为60公里小时,问,汽车能否先到达处?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【点睛】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.2、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.3、C【解析】
首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.4、C【解析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.5、C【解析】
由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【点睛】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.6、A【解析】
根据不等式性质,结合特殊值法即可判断各选项.【详解】对于①,若,满足,但不成立,所以A错误;对于②,若,满足,但不成立,所以B错误;对于③,,而,由不等式性质可得,所以③正确;对于④,若满足,但不成立,所以④错误;综上可知,正确的为③,有1个正确;故选:A.【点睛】本题考查了不等式性质应用,根据不等式关系比较大小,属于基础题.7、D【解析】
根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.8、B【解析】
求出函数的定义域,分析函数的单调性与奇偶性,将所求不等式变形为,然后利用函数的单调性与定义域可得出关于实数的不等式组,即可解得实数的取值范围.【详解】对于函数,有,解得,则函数的定义域为,定义域关于原点对称,,所以,函数为奇函数,由于函数在区间上为增函数,函数在区间上为减函数,所以,函数在上为增函数,由得,所以,,解得.因此,实数的取值范围是.故选:B.【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.9、A【解析】
作出两异面直线所成的角,然后由余弦定理求解.【详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.10、B【解析】
由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用,求得关于的递推关系式,利用配凑法证得是等比数列,由此求得数列的通项公式,进而求得的表达式,从而求得的值.【详解】当时,.由于,而,故,故答案为:.【点睛】本小题主要考查配凑法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.12、【解析】
先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.13、【解析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.14、【解析】
根据圆锥的底面和外接球的截面性质可得外接球的球心在上,再根据勾股定理可得求的半径.【详解】由圆锥的底面和外接球的截面性质可得外接球的球心在上,设球心为,球的半径为,则,圆,因为,所以,所以,,则有.解得,则.【点睛】本题主要考查了几何体的外接球,关键是会找到球心求出半径,通常结合勾股定理求.属于难题.15、3【解析】
先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.16、【解析】
求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)10或2;(2).【解析】
(1)由向量与向量垂直,求得或,进而求得的坐标,利用模的计算公式,即可求解;(2)因为与夹角为锐角,所以,且与不共线,列出不等关系式,即可求解.【详解】(1)由题意,平面向量,,由向量与向量垂直,则,解得或,当时,,则,所;当时,,则,所,(2)因为与夹角为锐角,所以,且与不共线,即且,解得,且,即的取值范围为.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直条件,以及向量的数量积的应用,着重考查了推理运算能力,属于基础题.18、(1)最小正周期是(2)【解析】
(1)运用辅助角公式化简得;(2)先计算的值为,构造,求出的值.【详解】(1)因为,所以,所以函数的最小正周期是.(2)因为,所以,因为,所以,所以,则【点睛】利用角的配凑法,即进行角的整体代入求值,考查整体思想的运用.19、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【点睛】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角三角形求解,考查逻辑推理能力与计算能力,属于中等题.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.21、(1)快递小哥不能在50分钟内将快件送到处.(2)汽车能先到达处.【解析】试题分析:(1)由题意结合图形,根据正弦定理可得,,求得的长,又,可求出快递小哥从地到地的路程,再计算小哥到达地的时间,从而问题可得解;(2)由题意,可根据余弦定理分别算出与的长,计算汽车行驰的路程,从而求出汽车到达地所用的时间,计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度工伤事故赔偿调查与分析合同3篇
- 2025年度水电工程 施工进度与质量控制合同3篇
- 2024年中国电动抽油机市场调查研究报告
- 2025年度出纳人员培训及考核合同
- 2024年中国爽滑捞面市场调查研究报告
- 2025年度消防工程设计合同文本下载3篇
- 2025年度物流安全事故处理与赔偿协议3篇
- 2025年度消防器材销售及售后服务合同样本5篇
- 《含CO2和H2O石油介质对GFRP管材的渗透与腐蚀行为研究》
- 2024至2030年标准模块式电源电涌保护器项目投资价值分析报告
- 动态负载均衡服务器集群
- 江苏省无锡市锡山区2023-2024学年二年级上学期期末数学试卷
- 卫生化学期末考试习题2
- 瓣周漏护理查房
- 历代反腐完整
- 《现代控制理论》(刘豹-唐万生)
- 广东省佛山市南海区三水区2022-2023学年七年级上学期期末历史试题(无答案)
- 重视心血管-肾脏-代谢综合征(CKM)
- 译林版小学英语六年级上册英文作文范文
- 学术英语(理工类)
- 浅谈“五育并举”背景下中小学劳动教育的探索与研究 论文
评论
0/150
提交评论