版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省通海二中2024届高一下数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若使得在区间上为增函数的整数有且仅有一个,则实数的取值范围是()A. B. C. D.2.在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则()A.6 B.5 C.4 D.33.已知是第二象限角,且,则的值为A. B. C. D.4.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.5.圆与圆的位置关系是()A.相切 B.内含 C.相离 D.相交6.化简sin2013o的结果是A.sin33o B.cos33o C.-sin33o D.-cos33o7.如图,已知平行四边形,,则()A. B.C. D.8.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为9.某同学5天上学途中所花的时间(单位:分钟)分别为12,8,10,9,11,则这组数据的方差为()A.4 B.2 C.9 D.310.在锐角中,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足约束条件,则的最大值为__________.12.数列的前项和,则__________.13.已知,则______;的最小值为______.14.在中,,是边上一点,且满足,若,则_________.15.(如下图)在正方形中,为边中点,若,则__________.16.已知样本数据的方差是1,如果有,那么数据,的方差为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的函数是奇函数(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域上的单调性;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅳ)设关于的函数有零点,求实数的取值范围.18.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.19.若数列中存在三项,按一定次序排列构成等比数列,则称为“等比源数列”。(1)在无穷数列中,,,求数列的通项公式;(2)在(1)的结论下,试判断数列是否为“等比源数列”,并证明你的结论;(3)已知无穷数列为等差数列,且,(),求证:数列为“等比源数列”.20.已知函数(1)求函数的最大值以及取得最大值时的集合;(2)若函数的递减区间.21.已知:的顶点,,.(1)求AB边上的中线CD所在直线的方程;(2)求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据在区间上为增函数的整数有且仅有一个,结合正弦函数的单调性,即可求得答案.【详解】,使得在区间上为增函数可得当时,满足整数至少有,舍去当时,,要使整数有且仅有一个,须,解得:实数的取值范围是.故选:A.【点睛】本题主要考查了根据三角函数在某区间上单调求参数值,解题关键是掌握正弦型三角函数单调区间的解法和结合三角函数图象求参数范围,考查了分析能力和计算能力,属于难题.2、D【解析】
由众数就是出现次数最多的数,可确定,题中中位数是中间两个数的平均数,这样可计算出.【详解】由甲组数据的众数为11,得,乙组数据中间两个数分别为6和,所以中位数是,得到,因此.故选:D.【点睛】本题考查众数和中位数的概念,掌握众数与中位数的定义是解题基础.3、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.4、A【解析】
转化条件求出满足要求的P点的范围,求出面积比即可得解.【详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【点睛】本题考查了几何概型的概率计算,属于基础题.5、D【解析】
写出两圆的圆心,根据两点间距离公式求得两圆心的距离,发现,所以两圆相交。比较三者之间大小判断位置关系。【详解】两圆的圆心分别为:,,半径分别为:,,两圆心距为:,所以,两圆相交,选D。【点睛】通过比较圆心距和半径和与半径差直接的关系判断,即比较三者之间大小。6、C【解析】试题分析:sin2013o=.考点:诱导公式.点评:直接考查诱导公式,我们要熟记公式.属于基础题型.7、A【解析】
根据平面向量的加法运算,即可得到本题答案.【详解】由题,得.故选:A【点睛】本题主要考查平面向量的加法运算,属基础题.8、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.9、B【解析】
先求平均值,再结合方差公式求解即可.【详解】解:由题意可得,由方差公式可得:,故选:B.【点睛】本题考查了样本数据的方差,属基础题.10、D【解析】
由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、57【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.12、【解析】
根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.13、50【解析】
由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.14、【解析】
记,则,则可求出,设,,得,,故结合余弦定理可得,解得的值,即可求,进而求的值.【详解】根据题意,不妨设,,则,因,所以,设,由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案为:.【点睛】本题主要考查了余弦定理在解三角形中的综合应用以及同角三角函数的基本关系式,属于中档题.15、【解析】∵,根据向量加法的三角形法则,得到∴λ=1,.则λ+μ=.故答案为.点睛:此题考查的是向量的基本定理及其分解,由条件知道,题目中要用和,来表示未知向量,故题目中要通过正方形的边长和它特殊的直角,来做基底,表示出要求的向量,根据平面向量基本定理,系数具有惟一性,得到结果.16、1【解析】
利用方差的性质直接求解.【详解】根据题意,样本数据的平均数为,方差是1,则有,对于数据,其平均数为,其方差为,故答案为1.【点睛】本题考查方差的求法,考查方差的性质等基础知识,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ).【解析】试题分析:(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围.试题解析:(Ⅰ)由题设,需,∴,∴,经验证,为奇函数,∴.(Ⅱ)减函数证明:任取,,且,则,∵∴∴,;∴,即∴该函数在定义域上是减函数.(Ⅲ)由得,∵是奇函数,∴,由(Ⅱ)知,是减函数∴原问题转化为,即对任意恒成立,∴,得即为所求.(Ⅳ)原函数零点的问题等价于方程由(Ⅱ)知,,即方程有解∵,∴当时函数存在零点.点睛:利用函数性质解不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.18、(1);(2).【解析】
(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,进而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形内角和定理可求,即可求得,再利用三角形的面积公式即可计算得解.【详解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,点D在边上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【点睛】本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.19、(1);(2)不是,证明见解析;(3)证明见解析.【解析】
(1)由,可得出,则数列为等比数列,然后利用等比数列的通项公式可间接求出;(2)假设数列为“等比源数列”,则此数列中存在三项成等比数列,可得出,展开后得出,然后利用数的奇偶性即可得出结论;(3)设等差数列的公差为,假设存在三项使得,展开得出,从而可得知,当,时,原命题成立.【详解】(1),得,即,且.所以,数列是以为首项,以为公比的等比数列,则,因此,;(2)数列不是“等比源数列”,下面用反证法来证明.假设数列是“等比源数列”,则存在三项、、,设.由于数列为单调递增的正项数列,则,所以.得,化简得,等式两边同时除以得,,且、、,则,,,,则为偶数,为奇数,等式不成立.因此,数列中不存在任何三项,按一定的顺序排列构成“等比源数列”;(3)不妨设等差数列的公差.当时,等差数列为非零常数列,此时,数列为“等比源数列”;当时,,则且,数列中必有一项,为了使得数列为“等比源数列”,只需数列中存在第项、第项使得,且有,即,,当时,即当,时,等式成立,所以,数列中存在、、成等比数列,因此,等差数列是“等比源数列”.【点睛】本题考查数列新定义“等比源数列”的应用,同时也考查了利用待定系数法求数列的通项,也考查“等比源数列”的证明,考查计算能力与推理能力,属于难题.20、(1)当时,的最大值为(2)【解析】
(1)化简根据正弦函数的最值即可解决,(2)根据(1)的化简结果,根据正弦函数的单调性即可解决。【详解】解:(1)因为,所以所以的最大值为,此时(2)由(1)得得即减区间为【点睛】本题主要考查了正弦函数的最值与单调性,属于基础题。21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 授权使用商标协议
- 文化创意灰土工程协议
- 服装设计师解聘合同证明
- 起草离婚协议书(2篇)
- 土地过户后承建协议书范本
- 集体合同决议会议记录
- 砍树免责合同范例
- 承租开荒地合同范例
- 品牌文化策划合同范例
- 网签授权合同范例
- 大班PPT课件《拍手歌》
- 体育教育专业大学生职业生涯规划书
- 健康教育工作手册
- 华为经营管理-华为的研发管理(6版)
- 暂缓执行房产拍卖申请书
- 西方景观设计思潮影响下的遗址公园景观设计实践-以西安环城公园为例的开题报告
- 投标文件澄清通知 澄清函
- 病毒性心肌炎临床路径
- 幼儿园优质公开课:大班科学《有趣的仿生》课件
- 2023-2024学年广东广州番禺区四年级数学第一学期期末综合测试试题含答案
- 四川智能化弱电集成系统施工方案
评论
0/150
提交评论